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Exploration/Exploitation Tradeoff

 Fundamental problem of RL due to the active
nature of the learning process

* Consider one-state RL problems known as
bandits
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Stochastic Bandits

* Formal definition:
— Single state: S = {s}
— A: set of actions (also known as arms)
— Space of rewards (typically assumed to be [0,1])

* No transition function to be learned since there is a single
state

« We simply need to learn the stochastic reward function
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Origin

« The term bandit comes from gambling where slot
machines can be thought as one-armed bandits.

* Problem: which slot
machine should we play at
each turn when their payoffs
are not necessarily the
same and initially unknown?
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Examples

Design of experiments (Clinical Trials)
Online ad placement
Games

Networks (packet routing)
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Simple yet difficult problem

« Simple: description of the problem is short

« Difficult: no known tractable optimal solution
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Simple heuristics

« Greedy strategy: select the arm with the highest
average so far

— May get stuck due to lack of exploration

e e-greedy: select an arm at random with
probability e and otherwise do a greedy selection

— Convergence rate depends on choice of €
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Regret

Let R(a) be the unknown average reward of a
Let r* = max R(a) and a™ = argmax, R(a)
a

Denote by loss(a) the expected regret of a
loss(a) =r* — R(a)

Denote by Loss,, the expected cumulative regret
for n time steps

Loss, = ).{—, loss(a;)
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Theoretical Guarantees

* When € Is constant, then
— For large enough t: Pr(a; + a*) = €
— Expected cumulative regret: Loss,, = 0(n)
 Linear regret

* Whene, <1/t
— For large enough t: Pr(a; # a*) = ¢, = 0 (%)
— Expected cumulative regret: Loss,, = O(log n)

e Logarithmic regret
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Empirical mean

 Problem: how far is the empirical mean R(a)
from the true mean R(a)?

* |f we knew that |R(a) — f?(a)‘ < bound
— Then we would know that R(a) < R(a) + bound
— And we could select the arm with best R(a) + bound

 Overtime, additional data will allow us to refine
R(a) and compute a tighter bound.
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Positivism In the Face of
Uncertainty

« Suppose that we have an oracle that returns an
upper bound UB,,(a) on R(a) for each arm based
on n trials of arm a.

« Suppose the upper bound returned by this oracle
converges to R(a) in the limit:

— i.e. lim UB,(a) = R(a)
n—>00

* Optimistic algorithm
— At each step, select argmax, UB,(a)
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Convergence

* Theorem: An optimistic strategy that always
selects argmax, UB,,(a) will converge to a*

* Proof by contradiction:
— Suppose that we converge to suboptimal arm a after
infinitely many trials.
— Then R(a) = UBy(a) = UB,(a') = R(a") Va'

— But R(a) = R(a’) Va' contradicts our assumption that
a Is suboptimal.

12

CS486/686 (c) 2017 P. Poupart



Probabilistic Upper Bound

* Problem: We can’t compute an upper bound with
certainty since we are sampling

 However we can obtain measures f that are

upper bounds most of the time
—ie,Pr(R(@) < f(a))=1-6
— Example: Hoeffding’s inequality

Pr (R(a) < R(a) +

21g

N

|

>1—-0

where n, is the number of trials for arm a
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Upper Confidence Bound (UCB)

 Set 6, = 1/n* in Hoeffding’s bound
* Choose a with highest Hoeffding bound

UCB(h)
V<0 n<0 n, <0 Va
Repeat untiln = h
2log n

Execute argmax, R(a) + -

Receive r
Ve<V4+r

ﬁ(a) - ngR(a)+r
ng+1
neen+1 n,e<n,+1

Return V
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UCB Convergence

« Theorem: Although Hoeffding’s bound is
probabilistic, UCB converges

2log n -

 Proof: As n increases, the term Increases,

Ng

ensuring that all arms are tried infinitely often
* Expected cumulative regret: Loss,, = O(log n)

— Logarithmic regret
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Summary

« Stochastic bandits
— Exploration/exploitation tradeoff

e ¢-greedy and UCB

— Theory: logarithmic expected cumulative regret

* |n practice:
— UCB often performs better than e-greedy
— Many variants of UCB improve performance
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