Bayesian Bandits

CS 486 / 686 University of Waterloo Lecture 22 Supplementary: July 17, 2017

Multi-Armed Bandits

- Problem:
 - N bandits with unknown average reward R(a)
 - Which arm *a* should we play at each time step?
 - Exploitation/exploration tradeoff
- Common frequentist approaches:
 - ϵ -greedy
 - Upper confidence bound (UCB)
- Alternative Bayesian approaches
 - Thompson sampling
 - Gittins indices

Bayesian Learning

- Notation:
 - r^a : random variable for *a*'s rewards
 - $Pr(r^a; \theta)$: unknown distribution (parameterized by θ)
 - $R(a) = E[r^a]$: unknown average reward
- Idea:
 - Express uncertainty about θ by a prior $Pr(\theta)$
 - Compute posterior $Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$ based on samples $r_1^a, r_2^a, ..., r_n^a$ observed for a so far.
- Bayes theorem: $Pr(\theta | r_1^a, r_2^a, ..., r_n^a) \propto Pr(\theta) Pr(r_1^a, r_2^a, ..., r_n^a | \theta)$

Distributional Information

• Posterior over θ allows us to estimate

- Distribution over next reward r^a $\Pr(r^a | r_1^a, r_2^a, ..., r_n^a) = \int_{\theta} \Pr(r^a; \theta) \Pr(\theta | r_1^a, r_2^a, ..., r_n^a) d\theta$

- Distribution over R(a) when θ includes the mean $\Pr(R(a)|r_1^a, r_2^a, ..., r_n^a) = \Pr(\theta|r_1^a, r_2^a, ..., r_n^a)$ if $\theta = R(a)$

- To guide exploration:
 - UCB: $\Pr(R(a) \leq bound(r_1^a, r_2^a, \dots, r_n^a)) \geq 1 \delta$
 - Bayesian techniques: $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$

Coin Example

- Consider two biased coins C_1 and C_2 $R(C_1) = \Pr(C_1 = head)$ $R(C_2) = \Pr(C_2 = head)$
- Problem:
 - Maximize # of heads in k flips
 - Which coin should we choose for each flip?

Bernoulli Variables

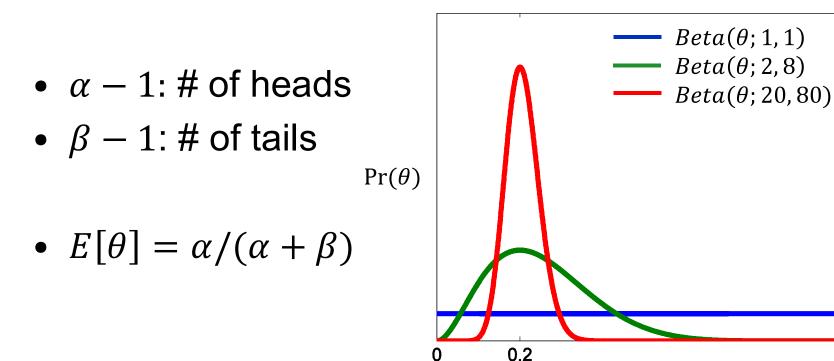
- r^{C_1} , r^{C_2} are Bernoulli variables with domain {0,1}
- Bernoulli dist. are parameterized by their mean

- i.e.
$$Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$

 $Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$

Beta distribution

• Let the prior $Pr(\theta)$ be a Beta distribution $Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$



1

 θ

Belief Update

• Prior: $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$

• Posterior after coin flip:

 $Pr(\theta | head) \propto Pr(\theta) Pr(head | \theta)$ $\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \qquad \theta$ $= \theta^{(\alpha + 1) - 1} (1 - \theta)^{\beta - 1}$ $\propto Beta(\theta; \alpha + 1, \beta)$ $Pr(\theta | tail) \propto Pr(\theta) Pr(tail | \theta)$ $\propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} (1 - \theta)$ $= \theta^{\alpha - 1} (1 - \theta)^{(\beta + 1) - 1}$ $\propto Beta(\theta; \alpha, \beta + 1)$

Thompson Sampling

- Idea:
 - Sample several potential average rewards:
 - $R_1(a), \dots R_k(a) \sim \Pr(R(a)|r_1^a, \dots, r_n^a)$ for each a
 - Estimate empirical average

$$\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$$

- Execute $\operatorname{argmax}_{a} \widehat{R}(a)$
- Coin example
 - $\Pr(R(a)|r_1^a, ..., r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$ where $\alpha_a - 1 = \#heads$ and $\beta_a - 1 = \#tails$

Thompson Sampling Algorithm Bernoulli Rewards

ThompsonSampling(h) $V \leftarrow 0$ For n = 1 to hSample $R_1(a), ..., R_k(a) \sim \Pr(R(a)) \quad \forall a$ $\hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^k R_i(a) \quad \forall a$ $a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)$ Execute a^* and receive r $V \leftarrow V + r$ Update $\Pr(R(a^*))$ based on rReturn V

Comparison

Thompson Sampling

- Action Selection $a^* = \operatorname{argmax}_a \widehat{R}(a)$
- Empirical mean $\widehat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$
- Samples

 $\begin{aligned} &R_i(a) \sim \Pr(R_i(a) | r_1^a \dots r_n^a) \\ &r_i^a \sim \Pr(r^a; \theta) \end{aligned}$

Some exploration

Greedy Strategy

- Action Selection $a^* = \operatorname{argmax}_a \tilde{R}(a)$
- Empirical mean $\tilde{R}(a) = \frac{1}{n} \sum_{i=1}^{n} r_i^a$
- Samples $r_i^a \sim \Pr(r^a; \theta)$
- No exploration

Sample Size

- In Thompson sampling, amount of data *n* and sample size *k* regulate amount of exploration
- As *n* and *k* increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration
 - As $n \uparrow$, $\Pr(R(a)|r_1^a \dots r_n^a)$ becomes more peaked
 - As $k \uparrow$, $\hat{R}(a)$ approaches $E[R(a)|r_1^a \dots r_n^a]$
- The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability

Continuous Rewards

- So far we assumed that $r \in \{0,1\}$
- What about continuous rewards, i.e. $r \in [0,1]$?
 - NB: rewards in [a, b] can be remapped to [0,1] by an affine transformation without changing the problem
- Idea:
 - When we receive a reward r
 - Sample $b \sim Bernoulli(r)$ s.t. $b \in \{0,1\}$

Thompson Sampling Algorithm Continuous rewards

ThompsonSampling(h) $V \leftarrow 0$ For n = 1 to hSample $R_1(a), \ldots, R_k(a) \sim \Pr(R(a)) \forall a$ $\widehat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_i(a) \quad \forall a$ $a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)$ Execute a^* and receive r $V \leftarrow V + r$ Sample $b \sim Bernoulli(r)$ Update $Pr(R(a^*))$ based on *b* Return V

Analysis

- Thompson sampling converges to best arm
- Theory:
 - Expected cumulative regret: $O(\log n)$
 - On par with UCB and ϵ -greedy
- Practice:
 - Sample size k often set to 1
 - Used by Bing for ad placement
 - Graepel, Candela, Borchert, Herbrich (2010) Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine, ICML.