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Outline

• Value Function Approximation
– Linear approximation
– Neural network approximation

• Deep Q-network
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Quick recap
• Markov Decision Processes: value iteration

• Reinforcement Learning: Q-Learning
ᇲ

• Complexity depends on number of states and 
actions
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Large State Spaces
• Computer Go: states

• Inverted pendulum: 
– 4-dimensional 

continuous state space
• Atari: 210x160x3 dimensions (pixel values)
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Functions to be Approximated

• Policy: 

• Q-function: 

• Value function: 
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Q-function Approximation

• Let 

• Linear

• Non-linear (e.g., neural network)
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Gradient Q-learning
• Minimize squared error between Q-value 

estimate and target
– Q-value estimate: 
– Target: 

ᇲ

• Squared error:

ᇲ

• Gradient 
ᇲ

𝒘

fixed
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Gradient Q-learning
Initialize weights at random in 
Observe current state 
Loop

Select action and execute it
Receive immediate reward 
Observe new state 

Gradient: డா௥௥
డ𝒘 𝒘

௔ᇲ
𝒘

ᇱ ᇱ డொ𝒘 ௦,௔

డ𝒘

Update weights: డா௥௥

డ𝒘

Update state: ’
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Recap: Convergence of 
Tabular Q-learning

• Tabular Q-Learning converges to optimal Q-
function under the following conditions:

and  

• Let 
– Where is # of times that is visited

• Q-learning
ᇲ
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Convergence of Linear 
Gradient Q-Learning

• Linear Q-Learning converges under the same 
conditions:

and  

• Let 
• Let 

• Q-learning

ᇲ

𝒘
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Divergence of 
non-linear Q-learning

• Even when the following conditions hold
and  

non-linear Q-learning may diverge

• Intuition:
– Adjusting to increase at might introduce 

errors at nearby state-action pairs.
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Mitigating divergence

• Two tricks are often used in practice:

1. Experience replay
2. Use two networks:

– Q-network
– Target network
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Experience Replay
• Idea: store previous experiences 

into a buffer and sample a mini-batch of 
previous experiences at each step to learn by 
Q-learning

• Advantages
– Break correlations between successive updates 

(more stable learning)
– Fewer interactions with environment needed to 

converge (greater data efficiency)
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Target Network
• Idea: Use a separate target network that is 

updated only periodically

repeat for each in mini-batch:

ᇲ

• Advantage: mitigate divergence

targetupdate
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Target Network
• Similar to value iteration:
repeat for all 

ᇲ

repeat for each in mini-batch:

ᇲ

targetupdate

targetupdate
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Deep Q-network
• Google Deep Mind:

• Deep Q-network: Gradient Q-learning with
– Deep neural networks
– Experience replay
– Target network

• Breakthrough: human-level play in many 
Atari video games
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Deep Q-network
Initialize weights and at random in 
Observe current state 
Loop

Select action and execute it
Receive immediate reward 
Observe new state 
Add ᇱ to experience buffer 
Sample mini-batch of experiences from buffer
For each experience ᇱ in mini-batch

Gradient: డா௥௥
డ𝒘 𝒘

௔ොᇲ
𝐰ഥ

ᇱ ᇱ డொ𝒘 ௦̂,௔ො

డ𝒘

Update weights: డா௥௥

డ𝒘

Update state: ’
Every steps, update target: 
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Deep Q-Network for Atari
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DQN versus Linear approx.


