Deep Reinforcement Learning

[Human-Level Control through deep reinforcement learning, Nature 2015]

> CS 486/686 University of Waterloo Lecture 20: July 10, 2017

Outline

- Value Function Approximation
 - Linear approximation
 - Neural network approximation
 - Deep Q-network

Quick recap

- Markov Decision Processes: value iteration $V(s) \leftarrow \max_{a} R(s) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$
- Reinforcement Learning: Q-Learning $Q(s,a) \leftarrow Q(s,a) + \alpha[R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a)]$
- Complexity depends on number of states and actions

Large State Spaces

• Computer Go: 3³⁶¹ states

- Inverted pendulum: (x, x', θ, θ')
 - 4-dimensional continuous state space

Functions to be Approximated

- Policy: $\delta(s) \rightarrow a$
- Q-function: $Q(s, a) \in \Re$
- Value function: $V(s) \in \Re$

Q-function Approximation

- Let $s = (x_1, x_2, ..., x_n)^T$
- Linear $Q(s,a) \approx \sum_{i} w_{ai} x_{i}$
- Non-linear (e.g., neural network) $Q(s,a) \approx g(x; w)$

Gradient Q-learning

- Minimize squared error between Q-value estimate and target
 - Q-value estimate: $Q_w(s, a)$
 - Target: $R(s) + \gamma \max_{a'} Q_{\overline{w}}(s', a')$

 \overline{w} fixed

- Squared error: $Err(\mathbf{w}) = \frac{1}{2} [Q_{\mathbf{w}}(s,a) - R(s) - \gamma \max_{a'} Q_{\overline{\mathbf{w}}}(s',a')]^2$
- Gradient

 $\frac{\partial Err}{\partial w} = \left[Q_w(s,a) - R(s) - \gamma \max_{a'} Q_w(s',a') \right] \frac{\partial Q_w(s,a)}{\partial w}$

Gradient Q-learning

Initialize weights w at random in [-1,1]Observe current state s

Loop

Select action a and execute it

Receive immediate reward r

Observe new state s'

Gradient: $\frac{\partial Err}{\partial w} = \left[Q_w(s, a) - r - \gamma \max_{a'} Q_w(s', a')\right] \frac{\partial Q_w(s, a)}{\partial w}$ Update weights: $w \leftarrow w - \alpha \frac{\partial Err}{\partial w}$ Update state: $s \leftarrow s'$

Recap: Convergence of Tabular Q-learning

 Tabular Q-Learning converges to optimal Qfunction under the following conditions:

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

• Q-learning

 $Q(s,a) \leftarrow Q(s,a) + \alpha(s,a)[R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

Convergence of Linear Gradient Q-Learning

 Linear Q-Learning converges under the same conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$

• Let
$$\alpha_t = 1/t$$

• Let
$$Q_w(s, a) = \sum_i w_i x_i$$

• Q-learning

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha_t \left[Q_{\boldsymbol{w}}(s,a) - r - \gamma \max_{a'} Q_{\boldsymbol{w}}(s',a') \right] \frac{\partial Q_{\boldsymbol{w}}(s,a)}{\partial \boldsymbol{w}}$$

Divergence of non-linear Q-learning

Even when the following conditions hold

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ non-linear Q-learning may diverge

- Intuition:
 - Adjusting w to increase Q at (s, a) might introduce errors at nearby state-action pairs.

Mitigating divergence

- Two tricks are often used in practice:
- 1. Experience replay
- 2. Use two networks:
 - Q-network
 - Target network

Experience Replay

- Idea: store previous experiences (s, a, s', r) into a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning
- Advantages
 - Break correlations between successive updates (more stable learning)
 - Fewer interactions with environment needed to converge (greater data efficiency)

Target Network

 Idea: Use a separate target network that is updated only periodically

repeat for each
$$(s, a, s', r)$$
 in mini-batch:
 $w \leftarrow w - \alpha_t [Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a')] \xrightarrow{\partial Q_w(s, a)}{\partial w}$
 $\overline{w} \leftarrow w$ update target

Advantage: mitigate divergence

Target Network

Similar to value iteration:
 repeat for all s

$$\underbrace{V(s)}_{update} \leftarrow \max_{a} R(s) + \gamma \sum_{s'} \Pr(s'|s,a) \underbrace{\overline{V}(s')}_{target} \quad \forall s$$

$$\overline{V} \leftarrow V$$

repeat for each
$$(s, a, s', r)$$
 in mini-batch:
 $w \leftarrow w - \alpha_t \left[Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$
 $\overline{w} \leftarrow w$ update target 15

CS486/686 Lecture Slides (c) 2017 P. Poupart

Deep Q-network

- Google Deep Mind:
- Deep Q-network: Gradient Q-learning with
 - Deep neural networks
 - Experience replay
 - Target network
- Breakthrough: human-level play in many Atari video games

Deep Q-network

Initialize weights w and \overline{w} at random in [-1,1]

Observe current state s

Loop

- Select action *a* and execute it
- Receive immediate reward \boldsymbol{r}
- Observe new state s'
- Add (s, a, s', r) to experience buffer
- Sample mini-batch of experiences from buffer
- For each experience $(\hat{s}, \hat{a}, \hat{s}', \hat{r})$ in mini-batch

Gradient: $\frac{\partial Err}{\partial w} = \left[Q_w(\hat{s}, \hat{a}) - \hat{r} - \gamma \max_{\hat{a}'} Q_{\overline{w}}(\hat{s}', \hat{a}') \right] \frac{\partial Q_w(\hat{s}, \hat{a})}{\partial w}$ Update weights: $w \leftarrow w - \alpha \frac{\partial Err}{\partial w}$ Update state: $s \leftarrow s'$ Every c steps, update target: $\overline{w} \leftarrow w$

Deep Q-Network for Atari

DQN versus Linear approx.

