
CS486/686 Lecture Slides (c) 2017 P.Poupart
1

CS486/686 Lecture Slides (c) 2017 P.Poupart
2

CS486/686 Lecture Slides (c) 2017 P.Poupart
3

Solving Problems by
Searching

CS486/686

University of Waterloo

Lecture 2: May 3, 2017

[RN2] Sec 3.1-3.5

[RN3] Sec 3.1-3.4

CS486/686 Lecture Slides (c) 2017 P.Poupart
4

Outline

• Problem solving agents and search

• Examples

• Properties of search algorithms

• Uninformed search
– Breadth first

– Depth first

– Iterative Deepening

CS486/686 Lecture Slides (c) 2017 P.Poupart
5

Introduction

• Search was one of the first topics studied in AI
– Newell and Simon (1961) General Problem Solver

• Central component to many AI systems
– Automated reasoning, theorem proving, robot

navigation, VLSI layout, scheduling, game playing,…

CS486/686 Lecture Slides (c) 2017 P.Poupart
6

Problem-solving agents

CS486/686 Lecture Slides (c) 2017 P.Poupart
7

Example: Traveling in Romania

Start

End

Formulate Goal
Get to Bucharest

Formulate Problem
Initial state: In(Arad)
Actions: Drive between cities
Goal Test: In(Bucharest)?
Path cost: Distance between cities

Find a solution
Sequence of cities: Arad,
Sibiu, Fagaras, Bucharest

CS486/686 Lecture Slides (c) 2017 P.Poupart
8

Examples of Search Problems

States: Locations of 8 tiles and blank

Initial State: Any state

Succ Func: Generates legal states that
result from trying 4 actions (blank up,
down, left, right)

Goal test: Does state match desired
configuration

Path cost: Number of steps

States: Arrangement of 0 to 8 queens on
the board

Initial State: No queens on the board

Succ Func: Add a queen to an empty
space

Goal test: 8 queens on board, none
attacked

Path cost: none

CS486/686 Lecture Slides (c) 2017 P.Poupart
9

More Examples

CS486/686 Lecture Slides (c) 2017 P.Poupart
10

Common Characteristics

• All of those examples are
– Fully observable

– Deterministic

– Sequential

– Static

– Discrete

– Single agent

• Can be tackled by simple search techniques

CS486/686 Lecture Slides (c) 2017 P.Poupart
11

Cannot tackle these yet…
Games against
an adversary

Chance Infinite number of states

Hidden states

All of the
above

CS486/686 Lecture Slides (c) 2017 P.Poupart
12

Searching

• We can formulate a search problem
– Now need to find the solution

• We can visualize a state space search in terms
of trees or graphs
– Nodes correspond to states
– Edges correspond to taking actions

• We will be studying search trees
– These trees are constructed “on the fly” by our

algorithms

CS486/686 Lecture Slides (c) 2017 P.Poupart
13

Data Structures for Search

• Basic data structure: Search Node
– State
– Parent node and operator applied to parent to reach

current node
– Cost of the path so far
– Depth of the node

CS486/686 Lecture Slides (c) 2017 P.Poupart
14

Expanding Nodes
• Expanding a node

– Applying all legal operators to the state contained in the
node and generating nodes for all corresponding
successor states

CS486/686 Lecture Slides (c) 2017 P.Poupart
15

Generic Search Algorithm
1. Initialize search algorithm with initial state of

the problem

2. Repeat
1. If no candidate nodes can be expanded, return

failure

2. Choose leaf node for expansion, according to
search strategy

3. If node contains a goal state, return solution

4. Otherwise, expand the node, by applying legal
operators to the state within the node. Add
resulting nodes to the tree

CS486/686 Lecture Slides (c) 2017 P.Poupart
16

Implementation Details
• We need to keep track only of nodes that need to

be expanded (fringe)
– Done by using a (prioritized) queue

1. Initialize queue by inserting the node
corresponding to the initial state of the problem

2. Repeat
1. If queue is empty, return failure
2. Dequeue a node
3. If the node contains a goal state, return solution
4. Otherwise, expand node by applying legal operators to

the state within. Insert resulting nodes into queue

Search algorithms differ in their queuing function!

CS486/686 Lecture Slides (c) 2017 P.Poupart
17

Breadth-first search
All nodes on a given level are expanded before any
nodes on the next level are expanded.

Implemented with a FIFO queue

A B,C C,D,E D,E,F,G

CS486/686 Lecture Slides (c) 2017 P.Poupart
18

Evaluating search algorithms

• Completeness: Is the algorithm guaranteed to find a
solution if a solution exists?

• Optimality: Does the algorithm find the optimal solution
(Lowest path cost of all solutions)

• Time complexity
• Space complexity

b Branching factor

d Depth of shallowest goal node

m Maximum length of any path in the state space

Variables

CS486/686 Lecture Slides (c) 2017 P.Poupart
19

Judging BFS
• Complete:

– Yes, if b is finite

• Optimal:
– Yes, if all costs are the same

• Time:
– 1+b+b2+b3+…+bd = O(bd)

• Space:
– O(bd)

All uninformed search methods will have
exponential time complexity

CS486/686 Lecture Slides (c) 2017 P.Poupart
20

Uniform Cost Search
• A variation of breadth-first search

– Instead of expanding shallowest node it expands the node with
lowest path cost

– Implemented using a priority queue

Optimal Yes

Complete if > 0

Time: O(bceiling(C*/))

Space: O(bceiling(C*/))

C* is
cost of
optimal
solution

 is
minimum
action
cost

CS486/686 Lecture Slides (c) 2017 P.Poupart
21

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
22

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
23

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
24

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
25

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
26

Depth-first search
The deepest node in the current fringe of the search
tree is expanded first.

Implemented with a stack (LIFO queue)

CS486/686 Lecture Slides (c) 2017 P.Poupart
27

Judging DFS
• Complete:

– No, might get stuck going down a long path

• Optimal:
– No, might return a solution which is deeper (i.e. more

costly) than another solution

• Time:
– O(bm), m might be larger than d

• Space:

– O(bm)

Do not use DFS if you suspect a large tree depth

CS486/686 Lecture Slides (c) 2017 P.Poupart
28

Depth-limited search

CS486/686 Lecture Slides (c) 2017 P.Poupart
29

Iterative-deepening
• General strategy that repeatedly does depth-

limited search, but increases the limit each time

CS486/686 Lecture Slides (c) 2017 P.Poupart
30

Iterative-deepening

Breadth first search :
1 + b + b2 + … + bd-1 + bd

E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b2 + … + 2bd-1 + 1bd

E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(bd) time, O(bd) space

IDS is not as wasteful as one might think.

Note, most nodes in a tree are at the bottom level. It does not
matter if nodes at a higher level are generated multiple times.

CS486/686 Lecture Slides (c) 2017 P.Poupart
31

Summary
• Problem formulation usually requires abstracting away

real-world details to define a state space that can
feasibly be explored

• Variety of uninformed search strategies
– Assume no knowledge about the problem (general but

expensive)
– Mainly differ in the order in which they consider the states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes

Time O(bd) O(bceiling(C*/)) O(bm) O(bl) O(bd)

Space O(bd) O(bceiling(C*/)) O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes

CS486/686 Lecture Slides (c) 2017 P.Poupart
32

Summary

• Iterative deepening uses only linear space and
not much more time than other uninformed
search algorithms
– Use IDS when there is a large state space and the

maximum depth of the solution is unknown

• Things to think about:
– What about searching graphs?

– Repeated states?

