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Outline

• Problem solving agents and search

• Examples

• Properties of search algorithms

• Uninformed search
– Breadth first

– Depth first

– Iterative Deepening
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Introduction

• Search was one of the first topics studied in AI
– Newell and Simon (1961) General Problem Solver

• Central component to many AI systems
– Automated reasoning, theorem proving, robot 

navigation, VLSI layout, scheduling, game playing,…
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Problem-solving agents
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Example: Traveling in Romania

Start

End

Formulate Goal
Get to Bucharest

Formulate Problem
Initial state: In(Arad)
Actions: Drive between cities
Goal Test: In(Bucharest)?
Path cost: Distance between cities

Find a solution
Sequence of cities: Arad,  
Sibiu, Fagaras, Bucharest
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Examples of Search Problems

States: Locations of 8 tiles and blank

Initial State: Any state 

Succ Func: Generates legal states that 
result from trying 4 actions (blank up, 
down, left, right)

Goal test: Does state match desired 
configuration

Path cost: Number of steps

States: Arrangement of 0 to 8 queens on 
the board

Initial State: No queens on the board

Succ Func: Add a queen to an empty 
space

Goal test: 8 queens on board, none 
attacked

Path cost: none
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More Examples
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Common Characteristics

• All of those examples are
– Fully observable

– Deterministic

– Sequential

– Static

– Discrete

– Single agent

• Can be tackled by simple search techniques
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Cannot tackle these yet…
Games against 
an adversary

Chance Infinite number of states

Hidden states

All of the 
above
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Searching

• We can formulate a search problem
– Now need to find the solution

• We can visualize a state space search in terms 
of trees or graphs
– Nodes correspond to states
– Edges correspond to taking actions

• We will be studying search trees
– These trees are constructed “on the fly” by our 

algorithms
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Data Structures for Search

• Basic data structure: Search Node
– State
– Parent node and operator applied to parent to reach 

current node
– Cost of the path so far
– Depth of the node
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Expanding Nodes
• Expanding a node

– Applying all legal operators to the state contained in the 
node and generating nodes for all corresponding 
successor states
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Generic Search Algorithm
1. Initialize search algorithm with initial state of 

the problem

2. Repeat
1. If no candidate nodes can be expanded, return 

failure

2. Choose leaf node for expansion, according to 
search strategy

3. If node contains a goal state, return solution

4. Otherwise, expand the node, by applying legal 
operators to the state within the node. Add 
resulting nodes to the tree 
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Implementation Details
• We need to keep track only of nodes that need to 

be expanded (fringe)
– Done by using a (prioritized) queue

1. Initialize queue by inserting the node 
corresponding to the initial state of the problem

2. Repeat
1. If queue is empty, return failure
2. Dequeue a node
3. If the node contains a goal state, return solution
4. Otherwise, expand node by applying legal operators to 

the state within. Insert resulting nodes into queue

Search algorithms differ in their queuing function!
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Breadth-first search
All nodes on a given level are expanded before any 
nodes on the next level are expanded.

Implemented with a FIFO queue

A B,C C,D,E D,E,F,G
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Evaluating search algorithms

• Completeness: Is the algorithm guaranteed to find a 
solution if a solution exists?

• Optimality: Does the algorithm find the optimal solution 
(Lowest path cost of all solutions)

• Time complexity
• Space complexity

b Branching factor

d Depth of shallowest goal node

m Maximum length of any path in the state space

Variables
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Judging BFS
• Complete:

– Yes, if b is finite

• Optimal:
– Yes, if all costs are the same

• Time:
– 1+b+b2+b3+…+bd = O(bd)

• Space: 
– O(bd)

All uninformed search methods will have 
exponential time complexity 
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Uniform Cost Search
• A variation of breadth-first search

– Instead of expanding shallowest node it expands the node with 
lowest path cost

– Implemented using a priority queue

Optimal   Yes

Complete  if  > 0

Time: O(bceiling(C*/ ))

Space: O(bceiling(C*/ ))

C* is 
cost of 
optimal 
solution

 is 
minimum 
action 
cost
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Depth-first search
The deepest node in the current fringe of the search 
tree is expanded first.

Implemented with a stack (LIFO queue)
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Judging DFS
• Complete:

– No, might get stuck going down a long path

• Optimal:
– No, might return a solution which is deeper (i.e. more 

costly) than another solution

• Time:
– O(bm), m might be larger than d

• Space: 

– O(bm)  

Do not use DFS if you suspect a large tree depth
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Depth-limited search
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Iterative-deepening
• General strategy that repeatedly does depth-

limited search, but increases the limit each time 
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Iterative-deepening

Breadth first search :
1 + b + b2 + … + bd-1 + bd

E.g. b=10, d=5:  1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b2 + … + 2bd-1 + 1bd

E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(bd) time, O(bd) space

IDS is not as wasteful as one might think.  

Note, most nodes in a tree are at the bottom level.  It does not 
matter if nodes at a higher level are generated multiple times.
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Summary
• Problem formulation usually requires abstracting away 

real-world details to define a state space that can 
feasibly be explored

• Variety of uninformed search strategies
– Assume no knowledge about the problem (general but 

expensive)
– Mainly differ in the order in which they consider the states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes

Time O(bd) O(bceiling(C*/)) O(bm) O(bl) O(bd)

Space O(bd) O(bceiling(C*/)) O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes
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Summary

• Iterative deepening uses only linear space and 
not much more time than other uninformed 
search algorithms
– Use IDS when there is a large state space and the 

maximum depth of the solution is unknown

• Things to think about:
– What about searching graphs?

– Repeated states?


