Neural Networks
[RN2] Sec 20.5
[RN3] Sec 18.7

CS 486/686
University of Waterloo
Lecture 17: June 26, 2017

Outline

* Neural networks
- Perceptron

- Supervised learning algorithms for neural
networks

CS486/686 Lecture Slides (c) 2017 P. Poupart

Brain

Seat of human intelligence

Where memory/knowledge resides
Responsible for thoughts and decisions
Can learn

Consists of nerve cells called neurons

Neuron

Axonal %ization

\ Axon from another cell

Synapse

Dendrite

Nucleus (0 /

Synapses

Cell body or Soma

CS486/686 Lecture Slides (c) 2017 P. Poupart

Artificial Neural Networks

* Idea: mimic the brain to do computation

- Artificial neural network:
- Nodes (a.k.a. units) correspond to neurons
- Links correspond to synapses

- Computation:

- Numerical signal transmitted between nodes
corresponds to chemical signals between neurons

- Nodes modifying numerical signal correspond to
neurons firing rate

CS486/686 Lecture Slides (c) 2017 P. Poupart

ANN Unit

- For each unit i:

+ Weights: W;
- Strength of the link from unit j to unit i

- Input signals a; weighted by W;; and linearly
combined: in; = 2; Wj; q

» Activation function: g

- Numerical signal produced: a; = g(in;)

CS486/686 Lecture Slides (c) 2017 P. Poupart 6

ANN Unit

Bias Weight

a0=-1
w

a; = g(in)

=V

Input Input Activation
Links Function Function

Output
Ouiput Links

CS486/686 Lecture Slides (c) 2017 P. Poupart

Activation Function

» Should be nonlinear
- Otherwise network is just a linear function

+ Often chosen to mimic firing in neurons

- Unit should be "active” (output near 1) when
fed with the "right" inputs

- Unit should be “inactive” (output near O)
when fed with the "wrong" inputs

Common Activation Functions

Threshold Sigmoid
Ag(ii’li)

(b)
g(x) = 1/(1+e™)

Logic Gates

» McCulloch and Pitts (1943)
- Design ANNs to represent Boolean fns

* What should be the weights of the
following units to code AND, OR, NOT ?

-1 WMo -1 W -1
a1 3\ 1 2\

dy 2 dy

AND OR NOT
CS486/686 Lecture Slides (c) 2017 P. Poupart 1 O

Network Structures

* Feed-forward network

- Directed acyclic graph

- No internal state

- Simply computes outputs from inputs
* Recurrent network

- Directed cyclic graph

- Dynamical system with internal states
- Can memorize information

11

Feed-forward network

» Simple network with two inputs, one
hidden layer of two units, one output unit

a5 = g(W3 503 + Wy 504)
= 9(W3 59(W1 301 + W2 302) + W4 59(W1 401 + W, 402))
86/686 Lec es (¢) 2017 P. Pou 12

Perceptron

» Single layer feed-forward network

Input W, Qutput
Units Pt Units

CS486/686 Lecture Slides (c) 2017 P. Poupart

13

Threshold Perceptron
Hypothesis Space

* Hypothesis space hy:

- All binary classifications with parameters W s.t.
aeW:>0->1
aeW<0->0

+ Since aeW is linear in W, perceptron is called a
linear separator

Threshold Perceptron
Hypothesis Space

» Are all Boolean gates linearly separable?

I]A Il‘ [1‘
10 ® 1@ ® 1@ O

xx ._,

00 O— 0O - 0O o
0 1 b 0 x 1 b 0 1 b
(@ I and b () I or I (¢ L xor I,

Sigmoid Perceptron

* Represent "soft" linear separators

Perceptron output

1

sy A
7777

CS486/686 Lecture Slides (c) 2017 P. Poupart 1 6

Sigmoid Perceptron Learning

* Formulate learning as an optimization
search in weight space

- Since g differentiable, use gradient descent

* Minimize squared error:
E=0.5Err?=0.5(y - hy(x))?
* X: input
* y: target output
* hy/(x): computed output

CS486/686 Lecture Slides (c) 2017 P. Poupart 1 7

Perceptron Error Gradient
* E=05Erre=0.5 (y - hy(x))?
+ OE/0W; = Err oErr/oW,
= Err d(y - g(Z W x;))/ oW,
= -Err g(X; Wx)x

* When g is sigmoid fn, then g' = g(1-g)

18

Perceptron Learning Algorithm

» Perceptron-Learning(examples,network)
- Repeat

* For each e in examples do
in < 2; Wixle]
Err < y[e] - g(in)
W; & W, +a Err g(in) x;[e]

- Until some stopping criteria satisfied
- Return learnt network

* N.B. a is a learning rate corresponding to the
step size in gradient descent

CS486/686 Lecture Slides (c) 2017 P. Poupart 1 9

Multilayer Feed-forward
Neural Networks

* Perceptron can only represent (soft)
linear separators

- Because single layer

»+ With multiple layers, what fns can be
represented?

- Virtually any function!

20

Multilayer Networks

&

Output units

W,

Hidden units

Ay

Input units

a; = g(X; W;ig (T Wejar))

21

Slides (c) 2017 P. Poupart

Lecture

Multilayer Networks

» Adding two sigmoid units with parallel
but opposite "cliffs" produces a ridge

Network output

4 '4

CS486/686 Lecture Slides (c) 2017 P. Poupart 22

Multilayer Networks

23

CS486/686 Lecture Slides (c) 2017 P. Poupart

intfersecting ridges (and

ing) produces a bump

Network output

» Adding two
threshold

Multilayer Networks

* By tiling bumps of various heights to-
gether, we can approximate any function

* Theorem: Neural networks with at least
one hidden layer of sufficiently many
sigmoid units can approximate any
function arbitrarily closely.

24

Common Activation Functions

. .)1 x=0
Threshold: h(x) = {_1 <0
+ Sigmoid: h(x) = o(x) = 1+l—x

1/x—u 2
* Gaussian: h(x) = e‘E()

eX—e X

» Hyperbolic tangent: h(x) = tanh(x) =

eX+e=X

+ Identity: h(x) = x

Weight Training

+ Parameters: < W w? . >
* Objectives:
- Error minimization
- Backpropagation (aka “"backprop™)
- Maximum likelihood
- Maximum a posteriori
- Bayesian learning

26

Least squared error

- Error function

1 1
EW) ==) Ex(W)? =23 |If Gon W) = 3.

where x, is the input of the n'" example
y,, is the label of the n'" example
f(xn, W) is the output of the neural net

Sequential Gradient Descent

* For each example (x,,y,,) adjust the weights
as follows:
oF,

oW,

VVji<—VVji—C(

+ How can we compute the gradient efficiently
given an arbitrary network structure?

* Answer: backpropagation algorithm

Backpropagation

» Back-Prop-Learning(examples,network)
- Repeat

* For each example e do

- Compute output a of each node in forward pass
» Input nodes: a; < x;[e]
» Other nodes: in; < ¥ ; Wj;a; and a; « g(in;)

- Compute modified error A of each node in backward pass (I = L to 1)
» Output nodes: A; « g'(in;) (a; — yilel)
» For each node j in layer I: A; « g'(in;) X; Wj;A;

» For each node i in layer [+ 1: Wj; « W;; + a a; A

- Until some stopping criteria satisfied
- Return learnt network

CS486/686 Lecture Slides (c) 2017 P. Poupart 29

Forward phase

* Propagate inputs forward to compute the
output of each unit

 Output aq; at unit i
=g(@in)) where in; =Y Wja;

30

Backward phase

» Use chain rule to recursively compute gradient

aWji - din; aWji

- For each weight W;: = A;a;

aini

- Let A= then

_ g'(in))(a; —¥;) base case:i is an output unit
I — I(: . . : :
g'(in;) 2; Wj;Aj recursion: i is a hidden unit
6inl~

- Since in; = }.; Wj;a; then oWy = a;

CS486/686 Lecture Slides (c) 2017 P. Poupart

31

Simple Example

» Consider a network with two layers:

eX—e™X

- Hidden nodes: g(x) = tanh(x) =
» Tip: tanh'(x) = 1 — tanh?*(x)
- Output node: g(x) =x

eX+e™*

- Objective: squared error

CS486/686 Lecture Slides (c) 2017 P. Poupart

32

Simple Example

Forward propagation:

- Hidden units: in; = X, Wy ;ay

- Output units: in; = 3 Wj;aq;
* Backward propagation:

- Output units: A; = a; — y;

a; = tanh(in;)

a; = inl-

- Hidden units: A; = (1 — tanh?(in;)) X; W;;A

- Gradients:

- Hidden layer's
k
tanh?(in;)) Zl WﬂA

— akAj= ak(l —

ji

CS486/686 Lecture Slides (c) 2017 P. Poupart

= a; A= aj(a; — y;)

33

Non-linear regression

examples

» Two layer network:
- 3 tanh hidden units and 1 identity output unit

y = |x|

y =sinx

y = j_xoocS(t)dt

CS486/686 Lecture Slides (c) 2017 P. Poupart 34

Analysis

- Efficiency:

- Fast gradient computation: linear in number of weights

-+ Convergence:
- Slow convergence (linear rate)
- May get trapped in local optima

* Prone to overfitting

- Solutions: early stopping, reqularization (add ||W||§
penalty term to objective)

CS486/686 Lecture Slides (c) 2017 P. Poupart 35

Neural Net Applications

* Neural nets can approximate any
function, hence 1000's of applications
- Speech recognition
- Character recognition
- Paint-quality inspection
- Vision-based autonomous driving
- Efc.

36

