
Neural Networks
[RN2] Sec 20.5
[RN3] Sec 18.7

CS 486/686
University of Waterloo

Lecture 17: June 26, 2017

CS486/686 Lecture Slides (c) 2017 P. Poupart 2

Outline

• Neural networks
– Perceptron
– Supervised learning algorithms for neural

networks

CS486/686 Lecture Slides (c) 2017 P. Poupart 3

Brain

• Seat of human intelligence
• Where memory/knowledge resides
• Responsible for thoughts and decisions
• Can learn
• Consists of nerve cells called neurons

CS486/686 Lecture Slides (c) 2017 P. Poupart 4

Neuron

CS486/686 Lecture Slides (c) 2017 P. Poupart 5

Artificial Neural Networks
• Idea: mimic the brain to do computation

• Artificial neural network:
– Nodes (a.k.a. units) correspond to neurons
– Links correspond to synapses

• Computation:
– Numerical signal transmitted between nodes

corresponds to chemical signals between neurons
– Nodes modifying numerical signal correspond to

neurons firing rate

CS486/686 Lecture Slides (c) 2017 P. Poupart 6

ANN Unit

• For each unit i:

• Weights: Wji
– Strength of the link from unit j to unit i
– Input signals aj weighted by Wji and linearly

combined: ini = Σj Wji aj

• Activation function: g
– Numerical signal produced: ai = g(ini)

CS486/686 Lecture Slides (c) 2017 P. Poupart 7

ANN Unit

CS486/686 Lecture Slides (c) 2017 P. Poupart 8

Activation Function

• Should be nonlinear
– Otherwise network is just a linear function

• Often chosen to mimic firing in neurons
– Unit should be “active” (output near 1) when

fed with the “right” inputs
– Unit should be “inactive” (output near 0)

when fed with the “wrong” inputs

CS486/686 Lecture Slides (c) 2017 P. Poupart 9

Common Activation Functions

Threshold Sigmoid

g(x) = 1/(1+e-x)

CS486/686 Lecture Slides (c) 2017 P. Poupart 10

Logic Gates

• McCulloch and Pitts (1943)
– Design ANNs to represent Boolean fns

• What should be the weights of the
following units to code AND, OR, NOT ?

-1 -1 -1
a1 a1

a1
a2 a2

thresh thresh thresh

CS486/686 Lecture Slides (c) 2017 P. Poupart 11

Network Structures

• Feed-forward network
– Directed acyclic graph
– No internal state
– Simply computes outputs from inputs

• Recurrent network
– Directed cyclic graph
– Dynamical system with internal states
– Can memorize information

CS486/686 Lecture Slides (c) 2017 P. Poupart 12

Feed-forward network

• Simple network with two inputs, one
hidden layer of two units, one output unit

a5 = g(W3,5a3 + W4,5a4)
= g(W3,5g(W1,3a1 + W2,3a2) + W4,5g(W1,4a1 + W2,4a2))

CS486/686 Lecture Slides (c) 2017 P. Poupart 13

Perceptron

• Single layer feed-forward network

CS486/686 Lecture Slides (c) 2017 P. Poupart 14

Threshold Perceptron
Hypothesis Space

• Hypothesis space hW:
– All binary classifications with parameters W s.t.

a●W ≥ 0  1
a●W < 0  0

• Since a●W is linear in W, perceptron is called a
linear separator

CS486/686 Lecture Slides (c) 2017 P. Poupart 15

Threshold Perceptron
Hypothesis Space

• Are all Boolean gates linearly separable?

CS486/686 Lecture Slides (c) 2017 P. Poupart 16

Sigmoid Perceptron

• Represent “soft” linear separators

CS486/686 Lecture Slides (c) 2017 P. Poupart 17

Sigmoid Perceptron Learning

• Formulate learning as an optimization
search in weight space
– Since g differentiable, use gradient descent

• Minimize squared error:
E = 0.5 Err2 = 0.5 (y – hW(x))2

• x: input
• y: target output
• hW(x): computed output

CS486/686 Lecture Slides (c) 2017 P. Poupart 18

Perceptron Error Gradient

• E = 0.5 Err2 = 0.5 (y – hW(x))2

• E/Wj = Err Err/Wj
= Err (y – g(Σj Wjxj))/Wj
= -Err g’(Σj Wjxj) xj

• When g is sigmoid fn, then g’ = g(1-g)

CS486/686 Lecture Slides (c) 2017 P. Poupart 19

Perceptron Learning Algorithm
• Perceptron-Learning(examples,network)

– Repeat
• For each e in examples do

in  Σj Wjxj[e]
Err  y[e] – g(in)
Wj Wj +  Err g’(in) xj[e]

– Until some stopping criteria satisfied
– Return learnt network

• N.B.  is a learning rate corresponding to the
step size in gradient descent

CS486/686 Lecture Slides (c) 2017 P. Poupart 20

Multilayer Feed-forward
Neural Networks

• Perceptron can only represent (soft)
linear separators
– Because single layer

• With multiple layers, what fns can be
represented?
– Virtually any function!

CS486/686 Lecture Slides (c) 2017 P. Poupart 21

Multilayer Networks

CS486/686 Lecture Slides (c) 2017 P. Poupart 22

Multilayer Networks

• Adding two sigmoid units with parallel
but opposite “cliffs” produces a ridge

CS486/686 Lecture Slides (c) 2017 P. Poupart 23

Multilayer Networks

• Adding two intersecting ridges (and
thresholding) produces a bump

CS486/686 Lecture Slides (c) 2017 P. Poupart 24

Multilayer Networks
• By tiling bumps of various heights to-

gether, we can approximate any function

• Theorem: Neural networks with at least
one hidden layer of sufficiently many
sigmoid units can approximate any
function arbitrarily closely.

CS486/686 Lecture Slides (c) 2017 P. Poupart 25

Common Activation Functions

• Threshold:

• Sigmoid: షೣ

• Gaussian:
భ

మ

ೣషഋ

഑

మ

• Hyperbolic tangent:
ೣ షೣ

ೣ షೣ

• Identity:

CS486/686 Lecture Slides (c) 2017 P. Poupart 26

Weight Training

• Parameters:
• Objectives:

– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning

Least squared error
• Error function

where is the input of the example
is the label of the example

is the output of the neural net

CS486/686 Lecture Slides (c) 2017 P. Poupart 27

Sequential Gradient Descent
• For each example adjust the weights

as follows:

• How can we compute the gradient efficiently
given an arbitrary network structure?

• Answer: backpropagation algorithm

CS486/686 Lecture Slides (c) 2017 P. Poupart 28

CS486/686 Lecture Slides (c) 2017 P. Poupart 29

Backpropagation
• Back-Prop-Learning(examples,network)

– Repeat
• For each example do

– Compute output 𝑎 of each node in forward pass
» Input nodes: 𝑎௝ ← 𝑥௝[𝑒]

» Other nodes: 𝑖𝑛௜ ← ∑ 𝑊௝௜𝑎௝௝ and 𝑎௜ ← 𝑔(𝑖𝑛௜)

– Compute modified error ∆ of each node in backward pass (𝑙 = 𝐿 to 1)
» Output nodes: ∆௜ ← 𝑔ᇱ 𝑖𝑛௜ (𝑎௜ − 𝑦௜ 𝑒)

» For each node 𝑗 in layer 𝑙: ∆௝ ← 𝑔ᇱ 𝑖𝑛௝ ∑ 𝑊௝௜∆௜௜

» For each node 𝑖 in layer 𝑙 + 1: 𝑊௝௜ ← 𝑊௝௜ + 𝛼 𝑎௝ ∆௜

– Until some stopping criteria satisfied
– Return learnt network

Forward phase
• Propagate inputs forward to compute the

output of each unit
• Output at unit :

where

CS486/686 Lecture Slides (c) 2017 P. Poupart 30

Backward phase
• Use chain rule to recursively compute gradient

– For each weight ௝௜:
డா೙

డௐೕ೔

డா೙

డ௜௡೔

డ௜௡೔

డௐೕ೔
௜ ௝

– Let ௜
డா೙

డ௜௡೔
then

௜
௜ ௜ ௜

௜ ௝௜ ௝௝

– Since ௜ ௝௜ ௝௝ then డ௜௡೔

డௐೕ೔
௝

CS486/686 Lecture Slides (c) 2017 P. Poupart 31

Simple Example

• Consider a network with two layers:
– Hidden nodes:

ೣ షೣ

ೣ షೣ

• Tip: ᇱ ଶ

– Output node:

• Objective: squared error

CS486/686 Lecture Slides (c) 2017 P. Poupart 32

Simple Example
• Forward propagation:

– Hidden units:
– Output units:

• Backward propagation:
– Output units:
– Hidden units:

• Gradients:
– Hidden layers: ೙

ೖೕ

– Output layer: ೙

ೕ೔

CS486/686 Lecture Slides (c) 2017 P. Poupart 33

Non-linear regression
examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

ଶ

௫

ିஶ

CS486/686 Lecture Slides (c) 2017 P. Poupart 34

Analysis
• Efficiency:

– Fast gradient computation: linear in number of weights

• Convergence:
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting
– Solutions: early stopping, regularization (add

ଶ

ଶ

penalty term to objective)

CS486/686 Lecture Slides (c) 2017 P. Poupart 35

CS486/686 Lecture Slides (c) 2017 P. Poupart 36

Neural Net Applications

• Neural nets can approximate any
function, hence 1000’s of applications
– Speech recognition
– Character recognition
– Paint-quality inspection
– Vision-based autonomous driving
– Etc.

