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Outline

• Neural networks
– Perceptron
– Supervised learning algorithms for neural 

networks
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Brain

• Seat of human intelligence
• Where memory/knowledge resides
• Responsible for thoughts and decisions
• Can learn
• Consists of nerve cells called neurons
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Neuron
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Artificial Neural Networks
• Idea: mimic the brain to do computation

• Artificial neural network:
– Nodes (a.k.a. units) correspond to neurons
– Links correspond to synapses

• Computation:
– Numerical signal transmitted between nodes 

corresponds to chemical signals between neurons
– Nodes modifying numerical signal correspond to 

neurons firing rate
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ANN Unit

• For each unit i:

• Weights: Wji
– Strength of the link from unit j to unit i
– Input signals aj weighted by Wji and linearly 

combined:  ini = Σj Wji aj

• Activation function: g
– Numerical signal produced: ai = g(ini) 
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ANN Unit



CS486/686 Lecture Slides (c) 2017 P. Poupart 8

Activation Function

• Should be nonlinear
– Otherwise network is just a linear function

• Often chosen to mimic firing in neurons
– Unit should be “active” (output near 1) when 

fed with the “right” inputs
– Unit should be “inactive” (output near 0) 

when fed with the “wrong” inputs
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Common Activation Functions

Threshold Sigmoid

g(x) = 1/(1+e-x)
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Logic Gates

• McCulloch and Pitts (1943)
– Design ANNs to represent Boolean fns

• What should be the weights of the 
following units to code AND, OR, NOT ?

-1 -1 -1
a1 a1

a1
a2 a2

thresh thresh thresh
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Network Structures

• Feed-forward network
– Directed acyclic graph
– No internal state
– Simply computes outputs from inputs

• Recurrent network
– Directed cyclic graph
– Dynamical system with internal states
– Can memorize information
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Feed-forward network

• Simple network with two inputs, one 
hidden layer of two units, one output unit

a5 = g(W3,5a3 + W4,5a4)
= g(W3,5g(W1,3a1 + W2,3a2) + W4,5g(W1,4a1 + W2,4a2))
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Perceptron

• Single layer feed-forward network



CS486/686 Lecture Slides (c) 2017 P. Poupart 14

Threshold Perceptron 
Hypothesis Space

• Hypothesis space hW:
– All binary classifications with parameters W s.t.

a●W ≥ 0  1
a●W < 0  0

• Since a●W is linear in W, perceptron is called a 
linear separator
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Threshold Perceptron 
Hypothesis Space

• Are all Boolean gates linearly separable?
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Sigmoid Perceptron 

• Represent “soft” linear separators
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Sigmoid Perceptron Learning 

• Formulate learning as an optimization 
search in weight space
– Since g differentiable, use gradient descent

• Minimize squared error:
E = 0.5 Err2 = 0.5 (y – hW(x))2

• x: input
• y: target output
• hW(x): computed output
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Perceptron Error Gradient 

• E = 0.5 Err2 = 0.5 (y – hW(x))2

• E/Wj = Err Err/Wj
= Err (y – g(Σj Wjxj))/Wj
= -Err g’(Σj Wjxj) xj

• When g is sigmoid fn, then g’ = g(1-g)
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Perceptron Learning Algorithm 
• Perceptron-Learning(examples,network)

– Repeat
• For each e in examples do

in  Σj Wjxj[e]
Err  y[e] – g(in)
Wj Wj +  Err g’(in) xj[e]

– Until some stopping criteria satisfied
– Return learnt network

• N.B.  is a learning rate corresponding to the 
step size in gradient descent
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Multilayer Feed-forward 
Neural Networks 

• Perceptron can only represent (soft) 
linear separators
– Because single layer

• With multiple layers, what fns can be 
represented?
– Virtually any function!
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Multilayer Networks
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Multilayer Networks 

• Adding two sigmoid units with parallel 
but opposite “cliffs” produces a ridge
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Multilayer Networks 

• Adding two intersecting ridges (and 
thresholding) produces a bump
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Multilayer Networks 
• By tiling bumps of various heights to-

gether, we can approximate any function

• Theorem: Neural networks with at least 
one hidden layer of sufficiently many 
sigmoid units can approximate any 
function arbitrarily closely.
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Common Activation Functions

• Threshold: 

• Sigmoid: 

• Gaussian: 

• Hyperbolic tangent: 

• Identity: 
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Weight Training

• Parameters: 
• Objectives:

– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning



Least squared error
• Error function

where is the input of the example
is the label of the example

is the output of the neural net

CS486/686 Lecture Slides (c) 2017 P. Poupart 27



Sequential Gradient Descent 
• For each example adjust the weights 

as follows:

• How can we compute the gradient efficiently 
given an arbitrary network structure?

• Answer: backpropagation algorithm
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Backpropagation
• Back-Prop-Learning(examples,network)

– Repeat
• For each example do

– Compute output 𝑎 of each node in forward pass
» Input nodes: 𝑎 ← 𝑥 [𝑒]

» Other nodes: 𝑖𝑛 ← ∑ 𝑊 𝑎 and 𝑎 ← 𝑔(𝑖𝑛 )

– Compute modified error ∆ of each node in backward pass (𝑙 = 𝐿 to 1)
» Output nodes: ∆  ← 𝑔 𝑖𝑛  (𝑎 − 𝑦 𝑒 )

» For each node 𝑗 in layer 𝑙: ∆  ← 𝑔 𝑖𝑛 ∑ 𝑊 ∆

» For each node 𝑖 in layer 𝑙 + 1: 𝑊 ← 𝑊 + 𝛼 𝑎  ∆

– Until some stopping criteria satisfied
– Return learnt network



Forward phase
• Propagate inputs forward to compute the 

output of each unit
• Output at unit :

where    
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Backward phase
• Use chain rule to recursively compute gradient

– For each weight : 

– Let then

– Since then 
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Simple Example

• Consider a network with two layers:
– Hidden nodes: 

• Tip: 
– Output node: 

• Objective: squared error
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Simple Example
• Forward propagation: 

– Hidden units: 
– Output units: 

• Backward propagation:
– Output units: 
– Hidden units: 

• Gradients:
– Hidden layers: 

– Output layer: 
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Non-linear regression 
examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit
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Analysis
• Efficiency: 

– Fast gradient computation: linear in number of weights

• Convergence: 
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting
– Solutions: early stopping, regularization (add 

penalty term to objective) 
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Neural Net Applications 

• Neural nets can approximate any 
function, hence 1000’s of applications
– Speech recognition
– Character recognition
– Paint-quality inspection
– Vision-based autonomous driving
– Etc.


