Markov Decision Processes
[RN2] Sec 17.1,17.2,17.4,17 .5
[RN3] Sec17.1,172,17.4

CS 486/686
University of Waterloo
Lecture 12: June 7, 2017

Outline

- Markov Decision Processes
* Dynamic Decision Networks

CS486/686 Lecture Slides (c) 2017 P. Poupart

Sequential Decision Making

Static Inference
Bayesian Networks

4/\

Static Decision Making S:ig::n“:/:aa:k:)r\‘/fl\eﬂ';edre‘ge

Decision Networks Dynamic Bayesian Networks

\/

Sequential Decision Making
Markov Decision Processes
Dynamic Decision Networks

CS486/686 Lecture Slides (c) 2017 P. Poupart

Sequential Decision Making

* Wide range of applications
- Robotics (e.g., control)
- Investments (e.qg., portfolio management)

- Computational linguistics (e.g., dialogue
management)
- Operations research (e.g., inventory

management, resource allocation, call
admission control)

- Assistive technologies (e.g., patient
monitoring and support)

Markov Decision Process

- Intuition: Markov Process with...

- Decision nodes
- Utility nodes

Stationary Preferences
* Hum... but why many utility nodes?

+ U(s0,51.55,...)
- Infinite process = infinite utility function

- Solution:

- Assume stationary and additive preferences
B U(SOISIISZI'“) - ZT R(ST)

Discounted/Average Rewards

+ If process infinite, isn't Z; R(s;) infinite?

» Solution 1: discounted rewards

- Discount factor: O<y<1

- Finite utility: Z,; y'R(s;) is a geometric sum
- v is like an inflation rate of 1/y - 1

- Intuition: prefer utility sooner than later

» Solution 2: average rewards
- More complicated computationally
- Beyond the scope of this course

Markov Decision Process

» Definition
- Set of states: S
- Set of actions (i.e., decisions): A
- Transition model: Pr(s,|a; ;,5;)
- Reward model (i.e., utility): R(s;)
- Discount factor: O <y <1
- Horizon (i.e., # of time steps): h

* Goal: find optimal policy

Inventory Management

* Markov Decision Process
- States: inventory levels
- Actions: {doNothing, orderWidgets}
- Transition model: stochastic demand
- Reward model: Sales - Costs - Storage
- Discount factor: 0.999

- Horizon: oo

+ Tradeoff: increasing supplies decreases odds
of missed sales but increases storage costs

CS486/686 Lecture Slides (c) 2017 P. Poupart

Policy

* Choice of action at each time step

* Formally:
- Mapping from states to actions
- |e, 6(51-) - a-|-

- Assumption: fully observable states

» Allows a; to be chosen only based on current
state s;. Why?

10

Policy Optimization

* Policy evaluation:

- Compute expected utility
h
- EUQ3) = Zi0 1" Z, Pr(s;[8) R(sy)

* Optimal policy:
- Policy with highest expected utility
- EU(d) < EU(d*) for all &

11

Policy Optimization

* Three algorithms to optimize policy:
- Value iteration
- Policy iteration
- Linear Programming

* Value iteration:
- Equivalent to variable elimination

12

Value Iteration

* Nothing more than variable elimination
* Performs dynamic programming
+ Optimize decisions in reverse order

ao a1 a2

Value Iteration

+ At each t, starting from t=h down to O:
- Optimize a,: EU(a,|s,)?
- Factors: Pr(s.,;|a,s;), R(s;), for Ozi<h
- Restrict s,
- Eliminate s;,q,...,5,,.Gt.1,-.-,Gy,

ao a1 a2

Value Iteration

- Value when no time left:

= V(sh) = R(sp)

+ Value with one time step left:

= V(sh.1) = max,, , R(sp.1) + v Zg, Pr(splsy.1.0,.1) V(sh)

* Value with two time steps left:

- V(sh-2) = max,, , R(sp2) + v Z,, Pr(Sh.1lSn-2.0h-2) V(Sh-1)

- Bellman's equation:
- V(s;) = max,, R(sy) +v Zg,, Pr(sy.ls;.ap) V(Si.4)
- @, = argmax,, R(s;) + v Zg, Pr(sy.qlsy.ap) V(sy.1)

15

CS486/686 Lecture Slides (c) 2017 P. Poupart

A Markov Decision Process

v=0.9
1
Poor & You own a
Famous | A company
+0 /
In every state
S you must
A choose between
1 Saving money or
/2 Advertising
Rich &
S| Famous
/2 +10

/2

CS486/686 Lecture Slides (c) 2017 P. Poupart

16

t V(PU) V(PF) V(RU) V(RF)
h 0 0 10 10

h-1 0 45 145 19

h-2 2.03 8.55 16.53 25.08
h-3 4.76 12.20 18.35 28.72
h-4 7.63 15.07 20.40 31.18
h-5 10.21 17.46 22.61 33.21

CS486/686 Lecture Slides (c) 2017 P. Poupart

17

Finite Horizon

- When h is finite,
* Non-stationary optimal policy
+ Best action different at each time step

- Intuition: best action varies with the amount
of time left

18

Infinite Horizon

- When h is infinite,
- Stationary optimal policy
-+ Same best action at each time step

- Intuition: same (infinite) amount of time left
at each time step, hence same best action

- Problem: value iteration does an infinite

humber of iterations...

19

Infinite Horizon

* Assuming a discount factor y, after k time
steps, rewards are scaled down by X

* For large enough k, rewards become
insignificant since y* > 0

- Solution:

- pick large enough k
- run value iteration for k steps
- Execute policy found at the k' iteration

20

Computational Complexity

» Space and time: O(k|A||S]2) ©
- Here k is the number of iterations

» But what if |A| and |S| are defined by
several random variables and
consequently exponential?

» Solution: exploit conditional
independence

- Dynamic decision network

21

CS486/686 Lecture Slides (c) 2017 P. Poupart

Dynamic Decision Network

AAAAAAAAAAAA

Dynamic Decision Network

» Similarly o dynamic Bayes nets:
- Compact representation ©
- Exponential time for decision making ®

23

Partial Observability

* What if states are not fully observable?

» Solution: Partially Observable Markov
Decision Process

Partially Observable Markov
Decision Process (POMDP)

+ Definition
- Set of states: S
- Set of actions (i.e., decisions): A
- Set of observations: O
- Transition model: Pr(s;|a;_ ,5;1)
- Observation model: Pr(o;|s;)
- Reward model (i.e., utility): R(s;)
- Discount factor: O <y <1
- Horizon (i.e., # of time steps): h

* Policy: mapping from past obs. to actions

CS486/686 Lecture Slides (c) 2017 P. Poupart

25

POMDP

* Problem: action choice generally depends
on all previous observations...

- Two solutions:

- Consider only policies that depend on a
finite history of observations

- Find stationary sufficient statistics
encoding relevant past observations

26

Partially Observable DDN

» Actions do not depend on all state variables

Ach-z Ach-l Actt

S \ E\@\

&

Policy Optimization

* Policy optimization:
- Value iteration (variable elimination)
- Policy iteration

* POMDP and PODDN complexity:

- Exponential in |O| and k when action choice
depends on all previous observations ®

- In practice, good policies based on subset
of past observations can still be found

28

COACH project

« Automated prompting system to help elderly persons
wash their hands

« |ATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger,
Jesse Hoey, Geoff Fernie and Craig Boutilier

CS486/686 Lecture Slides (c) 2017 P. Poupart

29

Aging Population

 Dementia
— Deterioration of intellectual faculties
— Confusion
— Memory losses (e.g., Alzheimer’s disease)

« Consequences:
— Loss of autonomy
— Continual and expensive care required

CS486/686 Lecture Slides (c) 2017 P. Poupart

30

Intelligent Assistive Technology
» Let’s facilitate aging in place

* |ntelligent assistive technology

— Non-obtrusive, yet pervasive
— Adaptable

* Benefits:
— Greater autonomy
— Feeling of independence

CS486/686 Lecture Slides (c) 2017 P. Poupart

31

System Overview

hand o&;‘.‘:\w £ I ?:-
. e e § h gm
washing Lot =

CS486/686 Lecture Slides (c) 2017 P. Poupart

planning

verbal
cues

32

Prompting Strategy

Sequential decision problem
— Sequence of prompts

Noisy sensors & imprecise actuators
— Noisy image processing, uncertain prompt effects
Partially unknown environment

— Unknown user habits, preferences and abilities

Tradeoff between complex concurrent goals
— Rapid task completion vs greater autonomy

Approach: Partially Observable Markov Decision
Processes (POMDPSs)

CS486/686 Lecture Slides (c) 2017 P. Poupart

33

POMDP components
« State set S = dom(HL) x dom(WF) x dom(D) x ...

— Hand Location < {tap,water,soap,towel,sink,away,...}
— Water Flow € {on, off},
— Dementia € {high, low}, etc.

e Observation set O = dom(C) x dom(FS)

— Camera < {handsAtTap, handsAtTowel, ...}
— Faucet sensor € {waterOn, waterOff}

 Action set A

— DoNothing, CallCaregiver, Prompt € {turnOnWater,

rinseHands, useSoap, ...} 14

CS486/686 Lecture Slides (c) 2017 P. Poupart

POMDP components

e Transition function Observation function
Pr(s’|s,a) Pr(o|s)

0.0

.O.6> 0.95>
0.07 0.07

000 000
« Reward function R(s,a)
— Task completed - +100
— Call caregiver = -30

— Each prompt -2 -1, -2 or -3

CS486/686 Lecture Slides (c) 2017 P. Poupart

35

