Decision Networks
[RNZ2] Sections 16.5, 16.6
[RN3] Sections 16.5, 16.6

CS 486/686
University of Waterloo
Lecture 10: May 31, 2017

Outline

» Decision Networks
- Aka Influence diagrams

- Value of information

CS486/686 Lecture Slides (c) 2017 P. Poupart

Decision Networks

- Decision networks (also known as influence
diagrams) provide a way of representing
sequential decision problems

- basic idea: represent the variables in the problem
as you would in a BN

- add decision variables - variables that you "control”
- add utility variables - how good different states are

CS486/686 Lecture Slides (c) 2017 P. Poupart

Sample Decision Network

Decision Networks: Chance Nodes

- Chance nodes

- random variables, denoted by circles
- as ina BN, probabilistic dependence on parents

Pr(f|flu) = .5
Pr(flmal) = .3
Pr(f|none) = .05

(Fever) orresil
//'.

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

BloodeTI/

CS486/686 Lecture Slides (c) 2017 P. Poupart

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flubt) =0
Pr(pos|mal bt)
Pr(neg|mal bt)
Pr(null|mal bt)
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt)=0
Pr(neg|D,~bt) =0
Pr(null|D,~bt) = 1

9
1
0

5

Decision Networks: Decision Nodes

- Decision nodes

- variables set by decision maker, denoted by squares

- parents reflect information available at time decision is
to be made

+ Example: the actual values of Ch and Fev will be
observed before the decision to take test must
be made

- agent can make different decisions for each
instantiation of parents (i.e., policies)

6

CS486/686 Lecture Slides (c) 2017 P. Poupart

Decision Networks: Value Node

* Value node
- specifies utility of a state, denoted by a diamond

- utility depends only on state of parents of value
node

- generally: only one value node in a decision network
» Utility depends only on disease and drug

U(fludrug, flu) = 20
U(fludrug, mal) = -300
DI"UQ U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10

I U(maldrug, none) = -20
\ / U(no drug, flu) = -10

U(no drug, mal) = -285
U(nho drug, none) = 30

CS486/686 Lecture Slides (c) 2017 P. Poupart

Decision Networks: Assumptions

+ Decision nodes are totally ordered

- decision variables D1, Do, ..., Dy

- decisions are made in sequence

- e.g., BloodTst (yes,no) decided before Drug
(f%,md,no)

* No-forgetting property

- any information available when decision D; is made
is available when decision Dj is made (for i< j)

- thus dll parents of D; are parents of D;

... Dashed arcs

> ensure the
BloodTst >| Drug no-forgetting

.......... >
/ """""""""""""" property
CS48 ides (c) 2017 P. Poupart

Policies

* Let Par(D;) be the parents of decision node D;
- Dom(Par(D;)) is the set of assignments to parents

+ A policy Jis a set of mappings J;, one for each
decision node D;

— O; :Dom(Par(D;)) —Dom(D;)

— O; associates a decision with each parent asst for D;

* For example, a policy for BT might be:
— Opt1 (c,f) = bt

= OBT (€~1) i bt \A BloodTst
— ot (~c,f) = bt T
— ogt (~c,~f) = ~bt

CS486/686 Lecture Slides (c) 2017 P. Poupart

Value of a Policy

* Value of policy ois the expected utility given
that decisions are executed according to o

- Given asst x to the set X of all chance

variables, let &x) denote the asst to decision
variables dictated by &
- e.g., asst to D; determined by it's parents’ asst in x

- e.g., asst to D, determined by it's parents’ asst in x
along with whatever was assigned to D;

— efc.

- Value of o:

EU(J) = 2x P(X, X)) U(X, X))

CS486/686 Lecture Slides (c) 2017 P. Poupart

10

Optimal Policies

* An optimal policy is a policy &* such that
EU(S" > EU(9) for all policies &

+ We can use the dynamic programming
principle yet again to avoid enumerating all
policies

- We can also use the structure of the decision

network to use variable elimination to aid in
the computation

11

Computing the Best Policy

- We can work backwards as follows

» First compute optimal policy for Drug (last
dec'n)
- for each asst to parents (C,F,BT,TR) and for each

decision value (D = md,fd,none), compute the
expected value of choosing that value of D

- set policy choice for each
value of parents to be

the value of D that

has max value

Computing the Best Policy

* Next compute policy for BT given policy
Op(C,F,BT,TR) just determined for Drug

- since Op(C,F,BT,TR) is fixed, we can treat Drug as
a hormal random variable with deterministic
probabilities

- i.e., for any instantiation of parents, value of Drug
is fixed by policy Jp

- this means we can solve for optimal policy for BT
just as before

- only uninstantiated vars are random vars (once we
fix its parents)

13

Computing the Best Policy

How do we compute these expected values?

- suppose we have asst <c,f,bt,pos> to parents of Drug
- we want to compute EU of deciding to set Drug = md
- we can run variable elimination!

Treat C,F,BT,TR,Dr as evidence

- this reduces factors (e.g., U restricted to bt,md: depends on
Dis)

- eliminate remaining variables (e.g., only Disease left)
- left with factor: EU(md|c,f,bt,pos) =
2 pis P(Dis|c,f,bt,pos,md) U(Dis,bt, md)
We now know EU of doing
Dr=md when c,f,bt,pos true

Can do same for fd,no to

decide which is best @ircasy”

Computing Expected Utilities

* The preceding slide illustrates a general
phenomenon

- computing expected utilities with BNs is quite
easy

- utility nodes are just factors that can be dealt
with using variable elimination

EU =X 4pcP(A,B.C) UB,C)
= ¥ a5c P(CIB) P(B|A) P(A) U(B.C) @

»+ Just eliminate variables QD\‘ [\-
in the usual way

15

CS486/686 Lecture Slides (c) 2017 P. Poupart

Optimizing Policies: Key Points

* If a decision node D has no decisions that
follow it, we can find its policy by
instantiating each of its parents and
computing the expected utility of each
decision for each parent instantiation

- no-forgetting means that all other decisions are
instantiated (they must be parents)

- its easy to compute the expected utility using VE

- the number of computations is quite large: we run
expected utility calculations (VE) for each parent
instantiation together with each possible decision
D might allow

- policy: choose max decision for each parent

instant'n 6

CS486/686 Lecture Slides (c) 2017 P. Poupart

Optimizing Policies: Key Points

* When a decision D node is optimized, it can be
treated as a random variable

- for each instantiation of its parents we now know
what value the decision should take

- just treat policy as a new CPT: for a given parent
instantiation x, D gets &(x) with probability 1 (all
other decisions get probability zero)

+ If we optimize from last decision to first, at

each point we can optimize a specific decision

by (a bunch of) simple VE calculations

- it's successor decisions (optimized) are just normal
nhodes in the BNs (with CPTs)

CS486/686 Lecture Slides (c) 2017 P. Poupart

17

Decision Network Notes

+ Decision networks commonly used by decision
analysts to help structure decision problems

* Much work put into computationally effective
techniques to solve these

- common trick: replace the decision nodes with random
variables at outset and solve a plain Bayes net (a
subtle but useful transformation)

+ Complexity much greater than BN inference
- we need to solve a number of BN inference problems

- one BN problem for each setting of decision node
parents and decision node value

18

A Decision Net Example

- Setting: you want to buy a used car, but there's
a good chance it is a "lemon” (i.e., prone to
breakdown). Before deciding to buy it, you can
take it to a mechanic for inspection. S/he will
give you a report on the car, labeling it either
"good” or "bad". A good report is positively
correlated with the car being sound, while a bad
report is positively correlated with the car
being a lemon.

» The report costs $50 however. So you could
risk it, and buy the car without the report.

» Owning a sound car is better than having no car,
which is better than owning a lemon.

CS486/686 Lecture Slides (c) 2017 P. Poupart

19

Car Buyer's Network
Rep: good,bad,hone

g b n

| i 0.2 0.8 0

- milo o o1

050.5 / / \ ~~i0 0 1
>

Inspect Buy

Utility
b |]-600
<L> b ~I | 1000 50 if

:Ell :288 inspect

20

CS486/686 Lecture Slides (c) 2017 P. Poupart

Evaluate Last Decision: Buy (1)

. EU(B|IR) = =, P(L|IR,B) U(L.I,B)
- I=i,R=g:
- EU(buy) = P(l|i,g,buy) U(l,i,buy) + P(~I|i,g,buy)
U(~l,i,buy)
= 18*-650 + .82*950 = 662
- EU(~buy) = P(l]i,g,~buy) U(l,i,~buy) +
P(~l]i,g,~buy) U(~l,i,~buy)
=-300 - 50 = -350 (-300 indep. of lemon)
- So optimal dgyy (i,g) = buy

21

CS486/686 Lecture Slides (c) 2017 P. Poupart

Evaluate Last Decision: Buy (2)

+ IT=i R=b:
- EU(buy) = P(l]i,b,buy) U(l,i,buy) + P(~I|i,b,buy)
U(~l,i,buy)
= .89%-650 + .11*950 = -474
- EU(~buy) = P(l]i,b,~buy) U(l,i,~buy) +
P(~l]i, b,~buy) U(~l,i,~buy)
= -300 - 50 = -350 (-300 indep. of lemon)
- So optimal dgyy (i,b) = ~buy

22

Evaluate Last Decision: Buy (3)

« IT=~i,R=n
- EU(buy) = P(l|~i,n,buy) U(l,~i buy) + P(~l|~i,n,buy)
U(~I,~i,buy)
= 5*-600 + .5*1000 = 200
- EU(~buy) = P(l|~i,n,~buy) U(l,~i,~buy) +
P(~l|~i,n,~buy) U(~l,~i,~buy)
=-300 (-300 indep. of lemon)
- So optimal dgyy (~i,n) = buy
» So optimal policy for Buy is:
— Opuy (i,g9) = buy ; dgyy (i,b) = ~buy ; dgyy (~i,n) = buy
* Note: we don't bother computing policy for
(i,~n), (~i, g), or (~i, b), since these occur with
probability O

23

CS486/686 Lecture Slides (c) 2017 P. Poupart

Using Variable Elimination

Factors: fi(L) fo(L, IR f2(L.IR)
f3€L,I,B)1() 2() fl('—@/@\
B

Query: EU(B)?

- /!
Evidence:I=i,R=g \ N :
Elim. Order: L @h(L,I,B)

Restriction: replace f2(L,I,R) by fa(L) = fa(L.i,g)
replace f3(L,I,B) by f5(L,B) = f3(L.i,B)
Step 1: Add fe(B)= 2| f1(L) fa(L) f5(L,B)
Remove: f1(L), f4(L), f5(L,B)

Last factor: f¢(B) is proportional to the expected utility
of buy and ~buy. Select action with highest value.

Repeat for EU(B|i,b), EU(B|~i,n)

24

Alternatively

- N.B.: variable elimination for decision networks

computes expected utility that are not scaled...

» Can still pick best action, since utility scale is
not important (relative magnitude is what
matters)

+ If we want exact expected utility:

- Let X = parents(U)

- EU(dec|evidence) = 2x Pr(X|dec,evidence) U(X)

- Compute Pr(X|dec,evidence) by variable elimination
- Multiply Pr(X|dec,evidence) by U(X)

- Summout X

25

Evaluate First Decision: Inspect

+ BU(T) = 2L r P(LRIi) U(L,i,88uy (I,R))
- where PR L|i) = P(RIL,i)P(LIi)

- EU(i) = (1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350)

- EU(~i) = P(n I|~i) U(l,~i,buy) + P(n,~I|~i) U(~I,~i,buy)

=205

= .5*-600 + .5*1000 = 200
- So optimal Orpspect () = inspect

LLLLLL

P(RL |), 5Buy U(L, i, JBuy)
gl |o1 buy | -600 - 50 = -650
bl |04 ~buy |-300 - 50 = -350
g~ | 0.45 buy 1000 - 50 = 950
b~ | 0.05 ~buy |-300 - 50 = -350

26

Using Variable Elimination

Factors: fi(L) f2(L I,R)
f3(R,I,B) f4(L,I,B)

Query: EU(T)?

Evidence: none

Elim. Order: L,R, B

N.B. f3(R,I,B) = d3(R,I)

Step 3: Add f7(I)= Zp fo(I.B)

Remove: f¢(I,B)

fl('—@/ @\

T B |fsR.IB)
\ '

fo(L,IR)

@h(L,I,B)

Step 1: Add f5(R,I,B)= 2| fi(L) f2(L.IR) f4(L.I,B)
Remove: fi(L) f2(L,I,R) f4(L I,B)

Step 2: Add fe(I,B)= 25 f3(RI,B) f5(R,I,B)
Remove: f3(R,I,B) f5(R,I,B)

Last factor: f7(I) is the expected utility of inspect and ~inspect.
Select action with highest expected utility.

CS486/686 Lecture Slides (c) 2017 P. Poupart

27

Value of Information

+ So optimal policy is: inspect the car and if the

report is good buy, otherwise don't buy

- EU = 205

- Notice that the EU of inspecting the car, then
buying it iff you get a good report is 205 (i.e., 255 -
50 (cost of inspection)) which is greater than 200.
So inspection improves EU.

- Suppose inspection cost is $60: would it be worth it?
- EU =255 - 60 =195 < EU(~i)

- The expected value of information associated with
inspection is B5 (it improves expected utility by this
amount ighoring cost of inspection). How? Gives
opportunity to change decision (~buy if bad).

- You should be willing to pay up to $55 for the report
28

CS486/686 Lecture Slides (c) 2017 P. Poupart

