CS 486/686 Artificial Intelligence

Lecture 1: May 1, 2017 University of Waterloo

CS486/686 Lecture Slides (c) 2017 P. Poupart

Course Info

- Instructor: Pascal Poupart
 - Email: ppoupart@uwaterloo.ca
 - Office Hours: Tue 10:00-11:30 (DC2514)
- Lectures:
 - Section 1: Mon & Wed 8:30-9:50 (MC4021)
 - Section 2: Mon & Wed 10:00-11:20 (MC4021)
- Textbook: Artificial Intelligence: A Modern Approach (3rd Edition), by Russell & Norvig
- Website: cs.uwaterloo.ca/~ppoupart/teaching/cs486-spring17
- Piazza: piazza.com/uwaterloo.ca/spring17/cs486686

Outline

- What is AI? (Chapter 1)
- Rational agents (Chapter 2)
- Some applications
- Course administration

Artificial Intelligence (AI)

- What is AI?
- What is intelligence?

Webster says: a. the capacity to acquire and apply knowledge. b. the faculty of thought and reason.

- What features/abilities do humans (animals? animate objects?) have that are indicative or characteristic of intelligence?
- abstract concepts, mathematics, language, problem solving, memory, logical reasoning, emotions, morality, ability to learn/adapt, etc...

Some Definitions (Russell & Norvig)

The exciting new effort to make computers that think machines with minds in the full and literal sense [Haugeland 85]	The study of mental faculties through the use of computational models [Charniak & McDermott 85]
[The automation of] activities that we associate with human thinking, such as decision making, problem solving, learning [Bellman 78]	The study of computations that make it possible to perceive, reason and act [Winston 92]
The art of creating machines that perform functions that require intelligence when performed by a human [Kurzweil 90]	A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes [Schalkoff 90]
The study of how to make computers do things at which, at the moment, people are better [Rich&Knight 91]	The branch of computer science that is concerned with the automation of intelligent behavior [Luger&Stubblefield93]

Some Definitions (Russell & Norvig)

Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

What is AI?

- Systems that think like humans
 - Cognitive science
 - Fascinating area, but we will not be covering it in this course
- Systems that think rationally
 - Aristotle: What are the correct thought processes
 - Systems that reason in a logical manner
 - Systems doing inference correctly

What is Al?

- Systems that behave like humans
 - Turing (1950) "Computing machinery and intelligence"

- Predicted that by 2000 a computer would have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in the following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

What is Al?

- Systems that act rationally
 - Rational behavior: "doing the right thing"
 - Rational agent approach
 - Agent: entity that perceives and acts
 - Rational agent: acts so to achieve best outcome
 - This is the approach we will take in this course
 - General principles of rational agents
 - Components for constructing rational agents

Topics we will cover

- Search
 - Uninformed and heuristic search
 - Constraint satisfaction problems
- Reasoning under uncertainty
 - Probability theory, utility theory and decision theory
 - Bayesian networks and decision networks
 - Markov decision processes
- Learning
 - Decision trees, statistical learning, ensemble learning
 - Neural networks, bandits, reinforcement learning
- Specialized areas
 - Natural language processing and robotics

Search

7		1			3		6	8
	6	3	2	5				
8					6	5		3
			8		9		7	
2			1		4			9
	9		5		7			
1		8	4					6
				8	2	1	4	
5	3		6			9		2

Reasoning Under Uncertainty

CS486/686 Lecture Slides (c) 2017 P. Poupart

Machine Learning

Natural Language Processing

A brief history of Al

- 1943-1955: Initial work in Al
 - McCulloch and Pitts produce boolean model of the brain
 - Turing's "Computing machinery and intelligence"
- Early 1950's: Early AI programs
 - Samuel's checker program, Newell and Simon's Logic Theorist, Gerlenter's Geometry Engine
- 1956: Happy birthday Al!
 - Dartmouth workshop attended by McCarthy, Minsky, Shannon, Rochester, Samuel, Solomonoff, Selfridge, Simon and Newell

A brief history of Al

- 1950's-1969: Enthusiasm and expectations
 - Many successes (in a limited way)
 - LISP, time sharing, resolution method, neural networks, vision, planning, learning theory, Shakey, machine translation,...
- 1966-1973: Reality hits
 - Early programs had little knowledge of their subject matter
 - Machine translation
 - Computational complexity
 - Negative result about perceptrons a simple form of neural network

A brief history of Al

- 1969-1979: Knowledge-based systems
- 1980-1988: Expert system industry booms
- 1988-1993: Expert system busts, AI Winter
- 1986-2000: The return of neural networks
- 2000-present: Increase in technical depth
 - Probabilities, statistics, optimization, utility theory, game theory, learning theory
- 2010-present: Big data, deep neural networks

Agents and Environments

Agents include humans, robots, softbots, thermostats... The agent function maps percepts to actions $f:P^* \rightarrow A$ The agent program runs on the physical architecture to produce f

Rational Agents

- Recall: A rational agent "does the right thing"
- Performance measure success criteria
 - Evaluates a sequence of environment states
- A rational agent chooses whichever action that maximizes the expected value of its performance measure given the percept sequence to date
 - Need to know performance measure, environment, possible actions, percept sequence
- Rationality *≠* omniscience, perfection, success
- Rationality
 → exploration, learning, autonomy

PEAS

- Specify the task environment:
 - Performance measure, Environment, Actuators, Sensors

Example: SIRI

Perf M: task completion, time taken, questions answered

Envir: smart phone status, user status

Actu: text messages, phone commands

Sens: microphone

Example: Autonomous Taxi

Perf M: Safety, destination, legality...

Envir: Streets, traffic, pedestrians, weather...

Actu: Steering, brakes, accelarator, horn...

Sens: GPS, engine sensors, video...

Properties of task environments

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multiagent

Hardest case: Partially observable, stochastic, sequential, dynamic, continuous and multiagent. (Real world)

Examples

Solitaire	Backgammon	Internet Shopping	Driverless cars
Fully Observable	Fully Observable	Partially Observable	Partially Observable
Deterministic	Stochastic	Stochastic	Stochastic
Sequential	Sequential	Episodic	Sequential
Static	Static	Dynamic	Dynamic
Discrete	Discrete	Discrete	Continuous
Single agent	Multiagent	Multiagent	Multiagent

Many Applications

- credit card fraud detection
- medical assistive technologies
- information retrieval, question answering
- scheduling, logistics, etc.
- aircraft, pipeline inspection
- speech recognition, natural language processing
- Mars rovers, driverless cars
- and, of course, cool robots