
Assignment 4: Markov Decision Processes and Reinforcement
Learning

CS486/686 – Spring 2017

Out: July 5, 2017
Due: July 21 (11:59 pm), 2017.

Submit an electronic copy of your assignment via LEARN. Late submissions incur a 2% penalty for every
rounded up hour past the deadline. For example, an assignment submitted 5 hours and 15 min late will receive
a penalty of ceiling(5.25) * 2% = 12%.

Be sure to include your name and student number with your assignment.

In this assignment you will implement in Python the value iteration and Q-learning algorithms for the following
simple grid-world problem in Questions 1 and 2.
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S = start state

B = bad state

G = goal state

An agent starting in the start state S must reach the goal state G. At each time step, the agent can go up, down,
left or right. However, the agent’s movements are a bit noisy since it goes in the intended direction with a high
probability a and in one of the two lateral directions with a low probability b. For instance, when executing the action
up, the agent will indeed go up by one square with probability a, but may go left with probability b and right with
probability b (here a + b + b = 1). Similarly, when executing the action left, the agent will indeed go left with
probability a, but may go up with probability b and down with probability b, When an action takes the agent out of
the grid world, the agent simply bounces off the wall and stays in its current location. For example, when the agent
executes left in the start state it stays in the start state with probability a, it goes up with probability b and down
with probability b. Similarly, when the agent executes up from the start state, it goes up with probability a, right with
probability b and stays in the start state with probability b. Finally, when the agent is in the goal state, the task is over
and the agent transitions to a special end state with probability 1 (for any action). This end state is absorbing, meaning
that the agent cannot get out of the end state (i.e., it stays in the end state with probability 1 for every action).

The agent receives a reward of 100 when it reaches the goal state, -70 for the bad state and -1 for every other state,
except the end state, which has a 0 reward. The agent’s task is to find a policy to reach the goal state as quickly as
possible, while avoiding the bad state.

In case you are not certain about the transition and reward model, download the file gridWorld.py from the course
website. It contains a precise description (in Python) of the transition and reward models. Feel free to directly use the
code in this file as part of your code in Questions 1 and 2.
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1. [35 pts] Value iteration

Compute the optimal policy by implementing the value iteration algorithm in Python. Use a discount factor of
0.99 and run value iteration until the difference between two successive value functions is at most 0.01 (i.e.,
|Vt+1(s)−Vt(s)| < 0.01 ∀s). Run value iteration once with a = 0.9, b = 0.05 and a second time with a = 0.8,
b = 0.1

What to hand in:

• Your Python code.

• The optimal policies and optimal value functions found for a = 0.9, b = 0.05 and for a = 0.8, b = 0.1.

• Discuss the differences found in the optimal policies and value functions for the different combinations of
a and b. Explain briefly how a and b impact the optimal policy.

2. [35 pts] Q-learning

Assuming the transition and reward models are unknown, compute the optimal policy by Q-learning (a.k.a
active temporal difference) in Python. In contrast to Question 1, the transition and reward models should only
be used to simulate the environment when the agent executes an action. Use a transition model with a = 0.9
and b = 0.05, a discount factor of 0.99 and a learning rate of α = 1/N(s, a) where N(s, a) is the number
of times that action a was executed in state s. Always starting from the start state, run Q-learning for 10,000
episodes, where an episode consists of a sequence of moves from the start state until the end state is reached.
Try two different ε-greedy exploration functions by setting ε to 0.05 and then to 0.2. In other words, when
ε = 0.05, select the optimal action with probability 0.95 and a random action with probability 0.05. Similarly,
when ε = 0.2, select the optimal action with probability 0.8 and a random action with probability 0.2.

What to hand in:

• Your Python code.

• The optimal policies and optimal value functions found for ε = 0.05 and ε = 0.2.

• Discuss the impact of ε on the convergence of Q-learning. More specifically, discuss the impact on the
rate of the convergence and the policy that it will eventually converge to.

3. [30 pts] Deep Q Network

Train an agent to solve the CartPole problem in OpenAI Gym by implementing a Deep Q Network. Since
CartPole has a continuous state space, we cannot use a table representation for the Q-function. Instead, you will
use a neural network to represent the Q-function. Follow these steps:

• Go to gym.openai.com and install the Gym package by following the instructions in the documenta-
tion.

• Follow the instructions in the documentation to run a simple agent that executes actions at random in the
CartPole environment.

• Replace the default random agent by a Deep Q Network (DQN) agent. More precisely, implement Q-
learning where the Q-function is represented by a neural network that takes as input a state and outputs a
Q-value for each possible action. You have three choices for the neural network:

(a) Use TensorFlow to implement a neural network. Go to tensorflow.org and install TensorFlow.
Click on getting started and follow the first two tutorials: Getting Started with TensorFlow and MNIST
for ML Beginners. This should be enough for you to implement a basic neural network.

(b) Use the class sklearn.neural network.MLPRegressor in scikit-learn to implement a neu-
ral network.

(c) Implement your own neural network from scratch based on the slides from Lecture 17.
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Among the choices above, TensorFlow is the preferred environment to design scalable neural networks
that run on GPUs (although you do not need a GPU for this assignment) as well as neural networks of any
shape. Sklearn provides a very basic neural network class that is sufficient for this assignment. Finally, if
you are really eager, you can also implement your own neural network from scratch, but this will be time
consuming. You will earn the same grade for any of the above choices.

What to hand in:

• Your Python code.

• Further instructions will be posted on the course website
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