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Outline

• Inference in Bayes Nets
• Variable Elimination
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Inference in Bayes Nets
• The independence sanctioned by D-separation 

(and other methods)  allows us to compute 
prior and posterior probabilities quite 
effectively.

• We'll look at a few simple examples to 
illustrate. We'll focus on networks without 
loops. (A loop is a cycle in the underlying 
undirected graph. Recall the directed graph 
has no cycles.)
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Simple Forward Inference (Chain)
• Computing marginal requires simple forward 

“propagation” of probabilities
•

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

P(J)=M,ET P(J,M,ET)
(marginalization)

P(J)=M,ET P(J|M)P(M|ET)P(ET)
(conditional independence)

P(J)=MP(J|M)ETP(M|ET)P(ET)
(distribution of sum)

P(J)=M,ET P(J|M,ET)P(M|ET)P(ET)
(chain rule)
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Simple Forward Inference (Chain)
• Same idea applies when we have 

“upstream” evidence

(chain rule)

P(J|ET) = MP(J,M|ET)
(marginalisation)

P(J|ET) = MP(J|M,ET) P(M|ET)

P(J|ET) = MP(J|M) P(M|ET)
(conditional independence)
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Simple Forward Inference (Pooling)
• Same idea applies with multiple parents
P(Fev) = ΣFlu,M,TS,ET P(Fev,Flu,M,TS,ET)
= ΣFlu,M,TS,ET P(Fev|Flu,M,TS,ET) P(Flu|M,TS,ET) 

P(M|TS,ET) P(TS|ET) P(ET) 
= ΣFlu,M,TS,ET P(Fev|Flu,M) P(Flu|TS) P(M|ET) P(TS) P(ET) 
= ΣFlu,M P(Fev|Flu,M) [ΣTS P(Flu|TS) P(TS)] 

[ΣET P(M|ET) P(ET)] 

• (1) by marginalisation; (2) by the chain rule; 
(3) by conditional independence; (4) by distribution
– note: all terms are CPTs in the Bayes net
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Simple Forward Inference (Pooling)
• Same idea applies with evidence

P(Fev|ts,~m) = ΣFlu P(Fev,Flu|ts,~m)

= ΣFlu P(Fev |Flu,ts,~m) P(Flu|ts,~m)

= ΣFlu P(Fev|Flu,~m) P(Flu|ts)
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Simple Backward Inference
• When evidence is downstream of query variable, 

we must reason “backwards.” This requires the 
use of Bayes rule:
P(ET | j) = α P(j | ET) P(ET)

= α ΣM P(j,M|ET) P(ET)
= α ΣM P(j|M,ET) P(M|ET) P(ET)
= α ΣM P(j|M) P(M|ET) P(ET)

• First step is just Bayes rule
– normalizing constant α is 1/P(j); but we needn’t compute 

it explicitly if we compute P(ET | j) for each value of 
ET: we just add up terms P(j | ET) P(ET) for all values 
of ET (they sum to P(j))
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Backward Inference (Pooling)
• Same ideas when several pieces of evidence 

lie “downstream”
P(ET|j,fev) =α P(j,fev|ET) P(ET)

= α ΣM,Fl,TS P(j,fev,M,Fl,TS|ET) P(ET)
= α ΣM,Fl,TS P(j|fev,M,Fl,TS,ET) P(fev|M,Fl,TS,ET) 

P(M|Fl,TS,ET) P(Fl|TS,ET) P(TS|ET) P(ET)
= α P(ET) ΣM P(j|M) P(M|ET) ΣFl P(fev|M,Fl) ΣTS

P(Fl|TS) P(TS)
– Same steps as before; but now we compute prob of 

both pieces of evidence given hypothesis ET and 
combine them. Note: they are independent given M; but 
not given ET.
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Variable Elimination
• The intuitions in the above examples give us 

a simple inference algorithm for networks 
without loops: the polytree algorithm. 

• Instead we'll look at a more general 
algorithm that works for general BNs; but 
the polytree algorithm will be a special 
case.

• The algorithm, variable elimination, simply 
applies the summing out rule repeatedly. 
– To keep computation simple, it exploits the 

independence in the network and the ability to 
distribute sums inward



CS486/686 Lecture Slides (c) 2015 P. Poupart

11

Factors
• A function f(X1, X2,…, Xk) is also called a 

factor. We can view this as a table of 
numbers, one for each instantiation of the 
variables X1, X2,…, Xk.
– A tabular rep’n of a factor is exponential in k

• Each CPT in a Bayes net is a factor:
– e.g., Pr(C|A,B) is a function of three variables, 

A, B, C
• Notation: f(X,Y) denotes a factor over the 

variables X ∪ Y. (Here X, Y are sets of 
variables.)
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The Product of Two Factors
• Let f(X,Y) & g(Y,Z) be two factors with 

variables Y in common
• The product of f and g, denoted h = f x g  

(or sometimes just h = fg), is defined:
h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)
ab 0.9 bc 0.7 abc 0.63 ab~c 0.27
a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02
~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12
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Summing a Variable Out of a Factor
• Let f(X,Y) be a factor with variable X  (Y

is a set)
• We sum out variable X from  f  to produce 

a new factor h = ΣX f,  which is defined:
h(Y) = Σx∊Dom(X) f(x,Y)

f(A,B) h(B)
ab 0.9 b 1.3
a~b 0.1 ~b 0.7
~ab 0.4

~a~b 0.6
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Restricting a Factor
• Let f(X,Y) be a factor with variable X  (Y

is a set)
• We restrict factor  f  to X=x by setting X 

to the value  x  and “deleting”. Define  h = 
fX=x as:      h(Y) = f(x,Y)

f(A,B) h(B) = fA=a
ab 0.9 b 0.9
a~b 0.1 ~b 0.1
~ab 0.4

~a~b 0.6
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Variable Elimination: No Evidence
• Computing prior probability of query var  X  

can be seen as applying these operations on 
factors

• P(C) = ΣA,B P(C|B) P(B|A) P(A)
= ΣB P(C|B) ΣA P(B|A) P(A)
= ΣB f3(B,C) ΣA f2(A,B) f1(A) 
= ΣB f3(B,C) f4(B) = f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB
f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination: No Evidence
• Here’s the example with some numbers

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625
~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2
~a~b 0.6 ~b~c 0.8
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VE: No Evidence (Example 2)

P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
= ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
= ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 
= ΣC f4(C,D) ΣB f2(B) f5(B,C)
= ΣC f4(C,D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious 
way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Variable Elimination: One View
• One way to think of variable elimination:

– write out desired computation using the chain 
rule, exploiting the independence relations in 
the network

– arrange the terms in a convenient fashion
– distribute each sum (over each variable) in as 

far as it will go
• i.e., the sum over variable X can be “pushed in” as 

far as the “first” factor mentioning X
– apply operations “inside out”, repeatedly 

eliminating and creating new factors (note 
that each step/removal of a sum eliminates 
one variable)
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Variable Elimination Algorithm
• Given query var Q, remaining vars Z. Let 

F be the set of factors corresponding 
to CPTs for {Q} ∪ Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj   -- in the order given -- eliminate Zj ∊ Z

as follows:
(a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  

where the fi are the factors in F that include Zj   
(b) Remove the factors  fi   (that mention Zj ) from F 

and add new factor  gj   to  F
3. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A) 
Remove: f1(A), f3(A,B,C) 

Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
Remove: f2(B) , f5(B,C) 

Step 3: Add f7(D) = ΣC f4(C,D) f6(C) 
Remove: f4(C,D), f6(C) 

Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(D)?  
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Variable Elimination: Evidence
• Computing posterior of query variable given 

evidence is similar; suppose we observe C=c:

P(A|c) = α P(A) P(c|A)
= α P(A) ΣB P(c|B) P(B|A)
= α f1(A) ΣB f3(B,c) f2(A,B) 
= α f1(A) ΣB f4(B) f2(A,B)
= α f1(A) f5(A)
= α f6(A)

New factors:  f4(B)= f3(B,c);   f5(A)= ΣB f2(A,B) f4(B);
f6(A)= f1(A) f5(A) 

B CA
f1(A) f2(A,B) f3(B,C)
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Variable Elimination with Evidence

Given query var Q, evidence vars E 
(observed to be e), remaining vars Z. 
Let F be set of factors involving CPTs 
for {Q} ∪ Z.

1. Replace each factor f∊F that mentions a variable(s) in E
with its restriction fE=e (somewhat abusing notation) 

2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)
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VE: Example 2 again with Evidence

Restriction: replace f4(C,D) with f5(C) = f4(C,d) 
Step 1: Add f6(A,B)= ΣC f5(C) f3(A,B,C)

Remove: f3(A,B,C), f5(C) 
Step 2: Add f7(A) = ΣB f6(A,B) f2(B) 

Remove: f6(A,B), f2(B) 
Last factors: f7(A), f1(A). The product f1(A) x f7(A) is 

(possibly unnormalized) posterior. So… P(A|d) = α f1(A) 
x f7(A).

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(A)?  
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)
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Some Notes on the VE Algorithm
• After iteration j (elimination of Zj), factors remaining in 

set F refer only to variables Xj+1, … Zn and Q. No factor 
mentions an evidence variable E after the initial 
restriction.

• Number of iterations: linear in number of variables
• Complexity is linear in number of vars and exponential in 

size of the largest factor. 
– Recall each factor has exponential size in its number of 

variables
– Can't do any better than size of BN (since its original 

factors are part of the factor set)
– When we create new factors, we might make a set of 

variables larger.



CS486/686 Lecture Slides (c) 2015 P. Poupart

25

Some Notes on the VE Algorithm
• The size of the resulting factors is determined by 

elimination ordering! (We’ll see this in detail)
• For polytrees, easy to find good ordering (e.g., 

work outside in).
• For general BNs, sometimes good orderings exist, 

sometimes they don't (then inference is 
exponential in number of vars). 
– Simply finding the optimal elimination ordering for 

general BNs is NP-hard.
– Inference in general is NP-hard in general BNs
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Elimination Ordering: Polytrees
• Inference is linear in size 

of network
– ordering: eliminate only 

“singly-connected” nodes
– e.g., in this network, 

eliminate D, A, C, X1,…; or 
eliminate X1,… Xk, D, A, C; 
or mix up…

– result: no factor ever larger 
than original CPTs

– eliminating B before these 
gives factors that include 
all of A,C, X1,… Xk !!!
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Effect of Different Orderings
• Suppose query variable 

is D. Consider 
different orderings 
for this network
– A,F,H,G,B,C,E:

• good: why?
– E,C,A,B,G,H,F:

• bad: why?
• Which ordering 

creates smallest 
factors?
– either max size or total

• which creates largest 
factors?
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Relevance

• Certain variables have no impact on the 
query. 
– In ABC network, computing Pr(A) with no 

evidence requires elimination of B and C. 
• But when you sum out these vars, you compute a 

trivial factor (whose value are all ones); for 
example:

• eliminating C: f4(B) = ΣC f3(B,C) = ΣC Pr(C|B)
• 1 for any value of B   (e.g., Pr(c|b) + Pr(~c|b) = 1)

• No need to think about B or C for this 
query

B CA



CS486/686 Lecture Slides (c) 2015 P. Poupart

29

Relevance: A Sound Approximation

• Can restrict attention to relevant
variables. Given query Q, evidence E:
– Q is relevant
– if any node Z is relevant, its parents are 

relevant
– if E∊E is a descendent of a relevant node, 

then E is relevant
• We can restrict our attention to the 

subnetwork comprising only relevant 
variables when evaluating a query Q


