
Bayes Nets (continued)
[RN2] Section 14.4
[RN3] Section 14.4

CS 486/686
University of Waterloo

Lecture 8: May 28, 2015

CS486/686 Lecture Slides (c) 2015 P. Poupart

2

Outline

• Inference in Bayes Nets
• Variable Elimination

CS486/686 Lecture Slides (c) 2015 P. Poupart

3

Inference in Bayes Nets
• The independence sanctioned by D-separation

(and other methods) allows us to compute
prior and posterior probabilities quite
effectively.

• We'll look at a few simple examples to
illustrate. We'll focus on networks without
loops. (A loop is a cycle in the underlying
undirected graph. Recall the directed graph
has no cycles.)

CS486/686 Lecture Slides (c) 2015 P. Poupart

4

Simple Forward Inference (Chain)
• Computing marginal requires simple forward

“propagation” of probabilities
•

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered

P(J)=M,ET P(J,M,ET)
(marginalization)

P(J)=M,ET P(J|M)P(M|ET)P(ET)
(conditional independence)

P(J)=MP(J|M)ETP(M|ET)P(ET)
(distribution of sum)

P(J)=M,ET P(J|M,ET)P(M|ET)P(ET)
(chain rule)

CS486/686 Lecture Slides (c) 2015 P. Poupart

5

Simple Forward Inference (Chain)
• Same idea applies when we have

“upstream” evidence

(chain rule)

P(J|ET) = MP(J,M|ET)
(marginalisation)

P(J|ET) = MP(J|M,ET) P(M|ET)

P(J|ET) = MP(J|M) P(M|ET)
(conditional independence)

CS486/686 Lecture Slides (c) 2015 P. Poupart

6

Simple Forward Inference (Pooling)
• Same idea applies with multiple parents
P(Fev) = ΣFlu,M,TS,ET P(Fev,Flu,M,TS,ET)
= ΣFlu,M,TS,ET P(Fev|Flu,M,TS,ET) P(Flu|M,TS,ET)

P(M|TS,ET) P(TS|ET) P(ET)
= ΣFlu,M,TS,ET P(Fev|Flu,M) P(Flu|TS) P(M|ET) P(TS) P(ET)
= ΣFlu,M P(Fev|Flu,M) [ΣTS P(Flu|TS) P(TS)]

[ΣET P(M|ET) P(ET)]

• (1) by marginalisation; (2) by the chain rule;
(3) by conditional independence; (4) by distribution
– note: all terms are CPTs in the Bayes net

CS486/686 Lecture Slides (c) 2015 P. Poupart

7

Simple Forward Inference (Pooling)
• Same idea applies with evidence

P(Fev|ts,~m) = ΣFlu P(Fev,Flu|ts,~m)

= ΣFlu P(Fev |Flu,ts,~m) P(Flu|ts,~m)

= ΣFlu P(Fev|Flu,~m) P(Flu|ts)

CS486/686 Lecture Slides (c) 2015 P. Poupart

8

Simple Backward Inference
• When evidence is downstream of query variable,

we must reason “backwards.” This requires the
use of Bayes rule:
P(ET | j) = α P(j | ET) P(ET)

= α ΣM P(j,M|ET) P(ET)
= α ΣM P(j|M,ET) P(M|ET) P(ET)
= α ΣM P(j|M) P(M|ET) P(ET)

• First step is just Bayes rule
– normalizing constant α is 1/P(j); but we needn’t compute

it explicitly if we compute P(ET | j) for each value of
ET: we just add up terms P(j | ET) P(ET) for all values
of ET (they sum to P(j))

CS486/686 Lecture Slides (c) 2015 P. Poupart

9

Backward Inference (Pooling)
• Same ideas when several pieces of evidence

lie “downstream”
P(ET|j,fev) =α P(j,fev|ET) P(ET)

= α ΣM,Fl,TS P(j,fev,M,Fl,TS|ET) P(ET)
= α ΣM,Fl,TS P(j|fev,M,Fl,TS,ET) P(fev|M,Fl,TS,ET)

P(M|Fl,TS,ET) P(Fl|TS,ET) P(TS|ET) P(ET)
= α P(ET) ΣM P(j|M) P(M|ET) ΣFl P(fev|M,Fl) ΣTS

P(Fl|TS) P(TS)
– Same steps as before; but now we compute prob of

both pieces of evidence given hypothesis ET and
combine them. Note: they are independent given M; but
not given ET.

CS486/686 Lecture Slides (c) 2015 P. Poupart

10

Variable Elimination
• The intuitions in the above examples give us

a simple inference algorithm for networks
without loops: the polytree algorithm.

• Instead we'll look at a more general
algorithm that works for general BNs; but
the polytree algorithm will be a special
case.

• The algorithm, variable elimination, simply
applies the summing out rule repeatedly.
– To keep computation simple, it exploits the

independence in the network and the ability to
distribute sums inward

CS486/686 Lecture Slides (c) 2015 P. Poupart

11

Factors
• A function f(X1, X2,…, Xk) is also called a

factor. We can view this as a table of
numbers, one for each instantiation of the
variables X1, X2,…, Xk.
– A tabular rep’n of a factor is exponential in k

• Each CPT in a Bayes net is a factor:
– e.g., Pr(C|A,B) is a function of three variables,

A, B, C
• Notation: f(X,Y) denotes a factor over the

variables X ∪ Y. (Here X, Y are sets of
variables.)

CS486/686 Lecture Slides (c) 2015 P. Poupart

12

The Product of Two Factors
• Let f(X,Y) & g(Y,Z) be two factors with

variables Y in common
• The product of f and g, denoted h = f x g

(or sometimes just h = fg), is defined:
h(X,Y,Z) = f(X,Y) x g(Y,Z)

f(A,B) g(B,C) h(A,B,C)
ab 0.9 bc 0.7 abc 0.63 ab~c 0.27
a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02
~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12

CS486/686 Lecture Slides (c) 2015 P. Poupart

13

Summing a Variable Out of a Factor
• Let f(X,Y) be a factor with variable X (Y

is a set)
• We sum out variable X from f to produce

a new factor h = ΣX f, which is defined:
h(Y) = Σx∊Dom(X) f(x,Y)

f(A,B) h(B)
ab 0.9 b 1.3
a~b 0.1 ~b 0.7
~ab 0.4

~a~b 0.6

CS486/686 Lecture Slides (c) 2015 P. Poupart

14

Restricting a Factor
• Let f(X,Y) be a factor with variable X (Y

is a set)
• We restrict factor f to X=x by setting X

to the value x and “deleting”. Define h =
fX=x as: h(Y) = f(x,Y)

f(A,B) h(B) = fA=a
ab 0.9 b 0.9
a~b 0.1 ~b 0.1
~ab 0.4

~a~b 0.6

CS486/686 Lecture Slides (c) 2015 P. Poupart

15

Variable Elimination: No Evidence
• Computing prior probability of query var X

can be seen as applying these operations on
factors

• P(C) = ΣA,B P(C|B) P(B|A) P(A)
= ΣB P(C|B) ΣA P(B|A) P(A)
= ΣB f3(B,C) ΣA f2(A,B) f1(A)
= ΣB f3(B,C) f4(B) = f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and f5(C)= ΣB
f3(B,C) f4(B)

B CA
f1(A) f2(A,B) f3(B,C)

CS486/686 Lecture Slides (c) 2015 P. Poupart

16

Variable Elimination: No Evidence
• Here’s the example with some numbers

B CA
f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)
a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625
~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2
~a~b 0.6 ~b~c 0.8

CS486/686 Lecture Slides (c) 2015 P. Poupart

17

VE: No Evidence (Example 2)

P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)
= ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)
= ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A)
= ΣC f4(C,D) ΣB f2(B) f5(B,C)
= ΣC f4(C,D) f6(C)
= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious
way

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

CS486/686 Lecture Slides (c) 2015 P. Poupart

18

Variable Elimination: One View
• One way to think of variable elimination:

– write out desired computation using the chain
rule, exploiting the independence relations in
the network

– arrange the terms in a convenient fashion
– distribute each sum (over each variable) in as

far as it will go
• i.e., the sum over variable X can be “pushed in” as

far as the “first” factor mentioning X
– apply operations “inside out”, repeatedly

eliminating and creating new factors (note
that each step/removal of a sum eliminates
one variable)

CS486/686 Lecture Slides (c) 2015 P. Poupart

19

Variable Elimination Algorithm
• Given query var Q, remaining vars Z. Let

F be the set of factors corresponding
to CPTs for {Q} ∪ Z.

1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj -- in the order given -- eliminate Zj ∊ Z

as follows:
(a) Compute new factor gj = ΣZj f1 x f2 x … x fk,

where the fi are the factors in F that include Zj
(b) Remove the factors fi (that mention Zj) from F

and add new factor gj to F
3. The remaining factors refer only to the query variable Q.

Take their product and normalize to produce P(Q)

CS486/686 Lecture Slides (c) 2015 P. Poupart

20

VE: Example 2 again

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A)
Remove: f1(A), f3(A,B,C)

Step 2: Add f6(C)= ΣB f2(B) f5(B,C)
Remove: f2(B) , f5(B,C)

Step 3: Add f7(D) = ΣC f4(C,D) f6(C)
Remove: f4(C,D), f6(C)

Last factor f7(D) is (possibly unnormalized) probability P(D)

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(D)?
Elim. Order: A, B, C

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

CS486/686 Lecture Slides (c) 2015 P. Poupart

21

Variable Elimination: Evidence
• Computing posterior of query variable given

evidence is similar; suppose we observe C=c:

P(A|c) = α P(A) P(c|A)
= α P(A) ΣB P(c|B) P(B|A)
= α f1(A) ΣB f3(B,c) f2(A,B)
= α f1(A) ΣB f4(B) f2(A,B)
= α f1(A) f5(A)
= α f6(A)

New factors: f4(B)= f3(B,c); f5(A)= ΣB f2(A,B) f4(B);
f6(A)= f1(A) f5(A)

B CA
f1(A) f2(A,B) f3(B,C)

CS486/686 Lecture Slides (c) 2015 P. Poupart

22

Variable Elimination with Evidence

Given query var Q, evidence vars E
(observed to be e), remaining vars Z.
Let F be set of factors involving CPTs
for {Q} ∪ Z.

1. Replace each factor f∊F that mentions a variable(s) in E
with its restriction fE=e (somewhat abusing notation)

2. Choose an elimination ordering Z1, …, Zn of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q.

Take their product and normalize to produce P(Q)

CS486/686 Lecture Slides (c) 2015 P. Poupart

23

VE: Example 2 again with Evidence

Restriction: replace f4(C,D) with f5(C) = f4(C,d)
Step 1: Add f6(A,B)= ΣC f5(C) f3(A,B,C)

Remove: f3(A,B,C), f5(C)
Step 2: Add f7(A) = ΣB f6(A,B) f2(B)

Remove: f6(A,B), f2(B)
Last factors: f7(A), f1(A). The product f1(A) x f7(A) is

(possibly unnormalized) posterior. So… P(A|d) = α f1(A)
x f7(A).

Factors: f1(A) f2(B)
f3(A,B,C) f4(C,D)

Query: P(A)?
Evidence: D = d
Elim. Order: C, B

C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

CS486/686 Lecture Slides (c) 2015 P. Poupart

24

Some Notes on the VE Algorithm
• After iteration j (elimination of Zj), factors remaining in

set F refer only to variables Xj+1, … Zn and Q. No factor
mentions an evidence variable E after the initial
restriction.

• Number of iterations: linear in number of variables
• Complexity is linear in number of vars and exponential in

size of the largest factor.
– Recall each factor has exponential size in its number of

variables
– Can't do any better than size of BN (since its original

factors are part of the factor set)
– When we create new factors, we might make a set of

variables larger.

CS486/686 Lecture Slides (c) 2015 P. Poupart

25

Some Notes on the VE Algorithm
• The size of the resulting factors is determined by

elimination ordering! (We’ll see this in detail)
• For polytrees, easy to find good ordering (e.g.,

work outside in).
• For general BNs, sometimes good orderings exist,

sometimes they don't (then inference is
exponential in number of vars).
– Simply finding the optimal elimination ordering for

general BNs is NP-hard.
– Inference in general is NP-hard in general BNs

CS486/686 Lecture Slides (c) 2015 P. Poupart

26

Elimination Ordering: Polytrees
• Inference is linear in size

of network
– ordering: eliminate only

“singly-connected” nodes
– e.g., in this network,

eliminate D, A, C, X1,…; or
eliminate X1,… Xk, D, A, C;
or mix up…

– result: no factor ever larger
than original CPTs

– eliminating B before these
gives factors that include
all of A,C, X1,… Xk !!!

CS486/686 Lecture Slides (c) 2015 P. Poupart

27

Effect of Different Orderings
• Suppose query variable

is D. Consider
different orderings
for this network
– A,F,H,G,B,C,E:

• good: why?
– E,C,A,B,G,H,F:

• bad: why?
• Which ordering

creates smallest
factors?
– either max size or total

• which creates largest
factors?

CS486/686 Lecture Slides (c) 2015 P. Poupart

28

Relevance

• Certain variables have no impact on the
query.
– In ABC network, computing Pr(A) with no

evidence requires elimination of B and C.
• But when you sum out these vars, you compute a

trivial factor (whose value are all ones); for
example:

• eliminating C: f4(B) = ΣC f3(B,C) = ΣC Pr(C|B)
• 1 for any value of B (e.g., Pr(c|b) + Pr(~c|b) = 1)

• No need to think about B or C for this
query

B CA

CS486/686 Lecture Slides (c) 2015 P. Poupart

29

Relevance: A Sound Approximation

• Can restrict attention to relevant
variables. Given query Q, evidence E:
– Q is relevant
– if any node Z is relevant, its parents are

relevant
– if E∊E is a descendent of a relevant node,

then E is relevant
• We can restrict our attention to the

subnetwork comprising only relevant
variables when evaluating a query Q

