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Outline

• Review probabilistic inference, 
independence and conditional 
independence

• Bayesian networks
– What are they
– What do they mean
– How do we create them
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Probabilistic Inference

• By probabilistic inference, we mean
– given a prior distribution Pr over variables of interest, 

representing degrees of belief
– and given new evidence for some variable 
– Revise your degrees of belief: posterior

• How do your degrees of belief change as a result 
of learning (or more generally , for 
set )
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Conditioning

• We define 

• That is, we produce by conditioning the 
prior distribution on the observed evidence 
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Semantics of Conditioning

̅

	 	1/
normalizing constant 5
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Inference: 
Computational Bottleneck

• Semantically/conceptually, picture is clear; 
but several issues must be addressed
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Issue 1
• How do we specify the full joint distribution 

over a set of random variables 	?
– Exponential number of possible worlds
– e.g., if the are Boolean, then 2 numbers (or 
2 1 parameters, since they sum to 1)

– These numbers are not robust/stable
– These numbers are not natural to assess (what is 

probability that “Pascal wants a cup of tea; it’s not 
raining or snowing in Montreal; robot charge level is 
low; …”?)
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Issue 2

• Inference in this representation is  
frightfully slow
– Must sum over exponential number of worlds to 

answer query Pr	 or to condition on evidence to 
determine 	
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Small Example: 3 Variables

cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

Pr ∧ | Pr ∧ ∧ / Pr

	0.108/ 0.108 0.012 0.016 0.064 0.54

Pr ∧ |~ Pr ∧ ∧ ~ /Pr ~

	0.072/ 0.072 0.008 0.144 0.576 0.09

Pr 0.108 0.012 0.072 0.008 0.2
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Is there anything we can do?

• How do we avoid these two problems?
– no solution in general
– but in practice there is structure we can exploit

• We’ll use conditional independence
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Independence
• Recall that and are independent iff:

Pr	 Pr	 | ⇔ Pr	 Pr	 | ⇔ Pr	 Pr	 Pr	
– Intuitively, learning doesn’t influence beliefs about 

• and are conditionally independent given iff:
Pr	 | Pr	 | 	⇔ 	Pr	 | Pr	 |

										⇔ Pr	 | 	 	Pr	 | Pr	 | ⇔ … 
– Intuitively, learning doesn’t influence your beliefs 

about if you already know 
– e.g., learning someone’s mark on 486 exam can influence 

the probability you assign to a specific GPA; but if you 
already knew the final 486 grade, learning the exam 
mark would not influence your GPA assessment
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Variable Independence
• Two variables and are conditionally 

independent given variable iff , are 
conditionally independent given for all  

, ,
– Also applies to sets of variables , ,
– Also to unconditional case ( , independent)

• If you know the value of (whatever it is), 
nothing you learn about will influence your 
beliefs about 
– these definitions differ from earlier ones (which talk 

about events, not variables)
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What good is independence?

• Suppose (say, Boolean) variables 1 2 	are 
mutually independent
– We can specify full joint distribution using only n 

parameters (linear) instead of 2 1	(exponential)

• How? Simply specify 1
– From this we can recover the probability of any world 

or any (conjunctive) query easily
• Recall Pr , Pr Pr

and Pr | Pr and Pr | Pr
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Example
• 4 independent Boolean random vars 1 2 3 4

1 2 3 4
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The Value of Independence
• Complete independence reduces both 

representation of joint distribution and inference
from to !!

• Unfortunately, such complete mutual 
independence is very rare. Most realistic domains 
do not exhibit this property.

• Fortunately, most domains do exhibit a fair 
amount of conditional independence. We can 
exploit conditional independence for 
representation and inference as well.

• Bayesian networks do just this
15



CS486/686 Lecture Slides (c) 2015 P. Poupart

An Aside on Notation
• Pr	 for variable (or set of variables) refers to the 

(marginal) distribution over . Pr	 | refers to family of 
conditional distributions over , one for each ∈ .

• Distinguish between Pr	 -- which is a distribution – and 
Pr	 or Pr	 ~ 	(or Pr	 for non-Boolean vars) -- which are 
numbers. Think of Pr	 as a function that accepts any 
∈ 	as an argument and returns Pr	 .

• Think of Pr	 | as a function that accepts any and and 
returns Pr	 | . Note that Pr	 | is not a single 
distribution; rather it denotes the family of distributions 
(over ) induced by the different ∈

16



CS486/686 Lecture Slides (c) 2015 P. Poupart

Exploiting Conditional 
Independence

• Consider a story:
– If Pascal woke up too early , Pascal probably needs 

coffee ; if Pascal needs coffee, he's likely grumpy . 
If he is grumpy then it’s possible that the lecture 
won’t go smoothly . If the lecture does not go 
smoothly then the students will likely be sad . 

E C L SG

E – Pascal woke up too early    G – Pascal is grumpy   S – Students are sad
C – Pascal needs coffee     L– The lecture did not go smoothly
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Conditional Independence

• If you learned any of , or , would your 
assessment of change? 
– If any of these are seen to be true, you would 

increase Pr	 and decrease Pr	 ~ . 
– So is not independent of , or , or , or .

• If you knew the value of (true or false), would 
learning the value of , or influence ?
– Influence that these factors have on is mediated by 

their influence on .
– Students aren’t sad because Pascal was grumpy, they 

are sad because of the lecture. 
– So is independent of , , and , given

E C L SG
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Conditional Independence

• So is independent of , and , and , given
• Similarly:

– is independent of , and , given
– is independent of , given

• This means that:
Pr	 | , , , 		 		Pr	 |
Pr	 | , , 	 	Pr	 |
Pr	 | , 	 	Pr	 |
Pr	 | and    Pr	 don’t “simplify”

E C L SG
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Conditional Independence

• By the chain rule (for any instantiation of ):
Pr	 , , , ,

Pr	 | , , , 	Pr	 | , , 	Pr	 | , 	Pr	 | 	Pr	
• By our independence assumptions:

Pr	 , , , , Pr	 | 	Pr	 | 	Pr	 | 	Pr	 | 	Pr	

• We can specify the full joint by specifying five 
local conditional distributions:
Pr	 | ; Pr	 | ; Pr	 | ; Pr	 | ; and Pr	

E C L SG
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Example Quantification

• Specifying the joint requires only 9 parameters 
(if we note that half of these are “1 minus” the 
others), instead of 31 for explicit representation
– linear in number of vars instead of exponential!
– linear generally if dependence has a chain structure

E C L SG

Pr	 | .
Pr	 ~ | 0.1
Pr	 |~ .
Pr	 ~ |~ 0.5

Pr	 .
Pr	 ~ 0.3

Pr	 | .
Pr	 ~ | 0.7
Pr	 |~ .
Pr	 ~ |~ 0.0

Pr	 | .
Pr	 ~ | 0.1
Pr	 |~ .
Pr	 ~ |~ 0.9

Pr	 | .
Pr ~ 0.8
Pr	 |~ .
Pr	 ~ |~ 0.9
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Inference is Easy

• Want to know ? Use sum out rule:

E C L SG
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These are all terms specified in our local distributions!
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Inference is Easy

• Computing in more concrete terms:
Pr 	 Pr | Pr 	 Pr |~ Pr ~

	0.8	 ∗ 	0.7	 	0.5	 ∗ 	0.3		 	0.78
Pr ~c) 	 	Pr	 ~ | Pr	 	 	Pr	 ~ |~ Pr	 ~ 	 	0.22

Pr	 ~ 	 	1	– 	Pr	 , as well
Pr	 	 	Pr	 | Pr	 	 	Pr	 |~ Pr	 ~

	0.3	 ∗ 	0.78	 1.0	 ∗ 	0.22	 	0.454
Pr	 ~ 	 	1	– 	Pr	 	 	0.546

E C L SG
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Bayesian Networks

• The structure above is a Bayesian network. 
– Graphical representation of the direct dependencies 

over a set of variables + a set of conditional probability 
tables (CPTs) quantifying the strength of those 
influences.

• Bayes nets generalize the above ideas in very 
interesting ways, leading to effective means of 
representation and inference under uncertainty.
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Bayesian Networks 
aka belief networks, probabilistic networks

• A BN over variables 1 2 consists of:
– a DAG whose nodes are the variables
– a set of CPTs   (Pr	 	|	 	) for each  

A

C

BP(a)
P(~a)

P(b)
P(~b)

P(c|a,b)     P(~c|a,b)
P(c|~a,b)   P(~c|~a,b)
P(c|a,~b)   P(~c|a,~b)
P(c|~a,~b) P(~c|~a,~b) 25
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Bayesian Networks 
aka belief networks, probabilistic networks

• Key notions 
– parents of a node: 
– children of node
– descendants of a node
– ancestors of a node
– family: set of nodes consisting of and its parents

• CPTs are defined over families in the BN 

A

C

B
,

,
, ,

, ,D 26
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An Example Bayes Net
• A few CPTs are 

“shown”
• Explicit joint 

requires 
params

• BN requires only 
params (the 

number of entries 
for each CPT is 
listed)

27
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Semantics of a Bayes Net
• The structure of the BN means: every is 

conditionally independent of all of its 
non-descendants given its parents:

for any subset 

28
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Semantics of Bayes Nets
• If we ask for 1 2

– assuming an ordering consistent with the network 

• By the chain rule, we have: 
1 2

• Thus, the joint is recoverable using the 
parameters (CPTs) specified in an arbitrary BN

29
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Constructing a Bayes Net
• Given any distribution over variables 

, we can construct a Bayes net that 
faithfully represents that distribution.

Take any ordering of the variables (say, the order given), 
and go through the following procedure for down to 1. 
Let be any subset ⊆ ,… , 	such that is 
independent of , … , 	 	 	given . Such a subset 
must exist (convince yourself). Then determine the parents 
of in the same way, finding a similar ⊆ ,… , , 
and so on. In the end, a DAG is produced and the BN 
semantics must hold by construction.
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Causal Intuitions
• The construction of a BN is simple

– works with arbitrary orderings of variable set
– but some orderings are much better than others!
– generally, if ordering/dependence structure reflects 

causal intuitions, a more natural, compact BN results

• In this BN, we’ve used 
the ordering Mal, Cold, 
Flu, Aches to build BN 
for distribution P for 
Aches
– Variable can only have 

parents that come earlier 
in the ordering
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Causal Intuitions
• Suppose we build the BN for distribution P 

using the opposite ordering
– i.e., we use ordering Aches, Cold, Flu, Malaria
– resulting network is more complicated!

• Mal depends on Aches; 
but it also depends on 
Cold, Flu given Aches
– Cold, Flu explain away Mal 

given Aches
• Flu depends on Aches; 

but also on Cold given
Aches

• Cold depends on Aches
32
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Compactness

1+1+1+8=11 numbers 1+2+4+8=15 numbers

In general, if each random variable is directly 
influenced by at most k others, then each CPT will be 
at most 2 . Thus the entire network of variables is 
specified by 2 .
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Testing Independence
• Given BN, how do we determine if two variables , 

are independent (given evidence )?
– we use a (simple) graphical property

• D-separation: A set of variables d-separates
and if it blocks every undirected path in the BN 
between and .

• and are conditionally independent given 
evidence if  d-separates and 
– thus BN gives us an easy way to tell if two variables are 

independent (set 	 	∅) or cond. independent
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Blocking in D-Separation
• Let be an undirected path from to in a 

BN. Let be an evidence set. We say blocks 
path iff there is some node on the path such 
that:

– Case 1: one arc on goes into and one goes out of 
, and ∈ ; or

– Case 2: both arcs on leave , and ∈ ; or

– Case 3: both arcs on enter and neither , nor any 
of its descendants, are in .
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Blocking: Graphical View

36
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D-Separation: Intuitions
1. Subway and 

Thermometer?

2.Aches and 
Fever?

3.Aches and 
Thermometer?

4.Flu and Malaria?

5.Subway and 
ExoticTrip?
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D-Separation: Intuitions
• Subway and Therm are dependent; but are independent 
given Flu (since Flu blocks the only path)

• Aches and Fever are dependent; but are independent 
given Flu (since Flu blocks the only path). Similarly for 
Aches and Therm (dependent, but indep. given Flu).

• Flu and Mal are indep. (given no evidence): Fever blocks 
the path, since it is not in evidence, nor is its descendant 
Therm.  Flu, Mal are dependent given Fever (or given 
Therm): nothing blocks path now.

• Subway, ExoticTrip are indep.; they are dependent given 
Therm; they are indep. given Therm and Malaria. This 
for exactly the same reasons for Flu/Mal above.
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