Uncertainty [RN2 Sec. 13.1-13.6] [RN3 Sec. 13.1-13.5]

CS 486/686 University of Waterloo Lecture 6: May 21, 2015

A Decision Making Scenario

- You are considering to buy a used car...
- Is it in good condition?
- How much are you willing to pay?
- Should you get it inspected by a mechanics?
- Should you buy the car?

In the next few lectures

- Probability theory
- Model uncertainty
- Utility theory
- Model preferences
- Decision theory
- Combine probability theory and utility theory

Introduction

- Logical reasoning breaks down when dealing with uncertainty
- Example: Diagnosis
$\forall p \operatorname{Symtom}(p$, Toothache) \Rightarrow Disease (p, Cavity)
- But not all people with toothaches have cavities...
$\forall p \operatorname{Symtom}(p$, Toochache) \Rightarrow Disease (p, Cavity)
\vee Disease (p, Gumdisease) v Disease (p, HitInTheJaw) $\vee \cdots$
- Can't enumerate all possible causes and not very informative
$\forall p$ Disease (p, Cavity) $\Rightarrow \operatorname{Symptom}(p$, Toothache)
- Does not work since not all cavities cause toothaches...

Introduction

- Logic fails because
- We are lazy
- Too much work to write down all antecedents and consequences
- Theoretical ignorance
- Sometimes there is just no complete theory
- Practical ignorance
- Even if we knew all the rules, we might be uncertain about a particular instance (not collected enough info yet)

Probabilities to the rescue

- For many years AI danced around the fact that the world is an uncertain place
- Then a few AI researchers decided to go back to the $18^{\text {th }}$ century
- Probabilities allow us to deal with uncertainty that comes from our laziness and ignorance
- Clear semantics
- Provide principled answers for
- Combining evidence, predictive and diagnostic reasoning, incorporation of new evidence
- Can be learned from data
- Intuitive for humans (?)

Discrete Random Variables

- Random variable A describes an outcome that cannot be determined in advance (roll of a dice)
- Discrete random variable means that its possible values come from a countable domain (sample space)
- E.G If X is the outcome of a dice throw, then $X \in\{1,2,3,4,5,6\}$
- Boolean random variable $A \in\{$ True, False $\}$
- $A=$ The Canadian PM in 2040 will be female
- $A=$ You have Ebola
- $A=$ You wake up tomorrow with a headache

Events

- An event is a complete specification of the state of the world in which the agent is uncertain
- Subset of the sample space
- Example:

Cavity $=$ True \wedge Toothache $=$ True
Dice $=2$

- Events must be
- Mutually exclusive
- Exhaustive (at least one event must be true)

Probabilities

- We let $P(A)$ denote the "degree of belief" we have that statement A is true
- Also "fraction of worlds in which A is true"
- Philosophers like to discuss this (but we won't)
- Note:
- $P(A)$ DOES NOT correspond to a degree of truth
- Example: Draw a card from a shuffled deck
- The card is of some type (e.g ace of spades)
- Before looking at it P (ace of spades) $=1 / 52$
- After looking at it P (ace of spades) $=1$ or 0

Visualizing A

Event space of all possible worlds.
It's area is 1
Worlds in which A is true

$$
P(A)=\text { Area of oval }
$$

The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- These axioms limit the class of functions that can be considered as probability functions

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

A zero area would mean no world could ever have A as true

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

The area	
of A	An area of
can't be	
larger	
than 1	would
mean all	
possible	
worlds	
have A as	
true	

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Take the axioms seriously!

- There have been attempts to use different methodologies for uncertainty
- Fuzzy logic, three valued logic, Dempster-Shafer, non-monotonic reasoning,...
- But if you follow the axioms of probability then no one can take advantage of you ©

A Betting Game [di Finetti 1931]

- Propositions A and B
- Agent 1 announces its "degree of belief" in A and B ($P(A)$ and $P(B)$)
- Agent 2 chooses to bet for or against A and B at stakes that are consistent with $P(A)$ and $P(B)$
- If Agent 1 does not follow the axioms, it is guaranteed to lose money
Agent 1 Agent 2 Outcome for Agent 1

Proposition Belief Bet Odds $A \wedge B A \wedge \sim B \sim A \wedge B \sim A \wedge \sim B$

A	0.4	A	4 to 6	-6	-6	4	4
B	0.3	B	3 to 7	-7	3	-7	3
$A \vee B$	0.8	$\sim(A \vee B)$	2 to 8	2	2	2	-8
						-11	-1
						-1	

Theorems from the axioms

- Thm: $P(\sim A)=1-P(A)$
- Proof: $P(A \vee \sim A)=P(A)+P(\sim A)-P(A \wedge \sim A)$

$$
\begin{aligned}
& P(\text { True })=P(A)+P(\sim A)-P(\text { False }) \\
& 1=P(A)+P(\sim A)-0 \\
& P(\sim A)=1-P(A)
\end{aligned}
$$

Multivalued Random Variables

- Assume domain of A (sample space) is $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$
- A can take on exactly one value out of this set

$$
\begin{aligned}
& P\left(A=v_{i} \wedge A=v_{j}\right)=0 \text { if } i \neq j \\
& P\left(A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right)=1
\end{aligned}
$$

Terminology

- Probability distribution:
- A specification of a probability for each event in our sample space
- Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
- Joint probability distribution
- Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables A and B :
- Joint distribution:

$$
\operatorname{Pr}(A=a \wedge B=b) \forall a, b
$$

- Marginalisation (sumout rule):

$$
\begin{aligned}
& \operatorname{Pr}(A=a)=\Sigma_{b} \operatorname{Pr}(A=a \wedge B=b) \\
& \operatorname{Pr}(B=b)=\Sigma_{a} \operatorname{Pr}(A=a \wedge B=b)
\end{aligned}
$$

Example: Joint Distribution

sunny			~sunny		
	cold	\sim cold		cold	\sim cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

$P($ headache \wedge sunny \wedge cold $)=0.108 P(\sim$ headache \wedge sunny $\wedge \sim$ cold $)=0.064$
$P($ headache \vee sunny $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$
$P($ headache $)=0.108+0.012+0.072+0.008=0.2$
marginalization

Conditional Probability

- $P(A \mid B)$ fraction of worlds in which B is true that also have A true

$$
\begin{aligned}
& H=\text { "Have headache" } \\
& F=\text { "Have Flu" } \\
& \\
& P(H)=1 / 10 \\
& P(F)=1 / 40 \\
& P(H \mid F)=1 / 2
\end{aligned}
$$

Headaches are rare and flu is rarer, but if you have the flu, then there is a $50-50$ chance you will have a headache

Conditional Probability

$H=$ "Have headache"
$F=" H a v e ~ F l u " ~$
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

$$
1(1+1)-1 / 2
$$

$P(H \mid F)=$ Fraction of flu inflicted worlds in which you have a headache
=(\# worlds with flu and headache)/ (\# worlds with flu)
= (Area of "H and F" region)/
(Area of "F" region)
$=\frac{P(H \Lambda F)}{P(F)}$

Conditional Probability

- Definition:

$$
P(A \mid B)=P(A \wedge B) / P(B)
$$

- Chain rule:

$$
P(A \wedge B)=P(A \mid B) P(B)
$$

Memorize these!

Inference

$H=$ "Have headache"
$F=$ "Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

$$
119-1 / 2
$$

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"

Is your reasoning correct?

Inference

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"
$H=$ "Have headache"
$F=$ "Have Flu"
$P(F \wedge H)=P(F) P(H \mid F)=1 / 80$
$P(H)=1 / 10$
$P(F \mid H)=P(F \wedge H) / P(H)=1 / 8$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

Example: Joint Distribution

	cold	\sim cold		cold	\sim cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	\sim headache	0.144	0.576

$P($ headache \wedge cold \mid sunny $)=P($ headache \wedge cold \wedge sunny $) / P($ sunny $)$

$$
\begin{aligned}
& =0.108 /(0.108+0.012+0.016+0.064) \\
& =0.54
\end{aligned}
$$

$P($ headache \wedge cold $\mid \sim$ sunny $)=P($ headache \wedge cold $\wedge \sim$ sunny $) / P(\sim$ sunny $)$

$$
\begin{aligned}
& =0.072 /(0.072+0.008+0.144+0.576) \\
& =0.09
\end{aligned}
$$

Bayes Rule

- Note
$P(A \mid B) P(B)=P(A \wedge B)=P(B \wedge A)=P(B \mid A) P(A)$
- Bayes Rule

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Memorize this!

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H, given evidence e

Posterior probability

More General Forms of Bayes Rule

$$
\begin{gathered}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)} \\
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \mid X)}{P(B \mid X)} \\
P\left(A=v_{i} \mid B\right)=\frac{P\left(B \mid A=v_{i}\right) P\left(A=v_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A=v_{k}\right) P\left(A=v_{k}\right)}
\end{gathered}
$$

Example

- A doctor knows that Asian flu causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10^{-7} chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

Example

- A doctor knows that Asian flu causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10^{-7} chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

$$
\begin{array}{ll}
A=\text { Asian flu } & \text { Evidence }=\text { Symptom }(F) \\
F=\text { fever } & \text { Hypothesis }=\text { Cause }(A)
\end{array}
$$

$$
P(A \mid F)=\frac{P(F \mid A) P(A)}{P(F)}=\frac{0.95 \times 10^{-7}}{0.01}=0.95 \times 10^{-5}
$$

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- Set of all variables: X
- Hidden variables: $H=X-Y-E$
- If we had the joint probability distribution then could marginalize
- $P(Y \mid E=e)=\alpha \sum_{h} P(Y \wedge E=e \wedge H=h)$ where α is the normalization factor

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- Set of all variables: X
- Hidden variables: $H=X-Y-E$
- If we had the joint probability distribution then could marginalize
- $P(Y \mid E=e)=\alpha \sum_{h} P(Y \wedge E=e \wedge H=h)$ where α is the normalization factor
Problem: Joint distribution is usually too big to handle

Independence

- Two variables A and B are independent if knowledge of A does not change uncertainty of B (and vice versa)
$-P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A \wedge B)=P(A) P(B)$
- In general $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)$

Need only n numbers to specify joint distribution!

Conditional Independence

- Absolute independence is often too strong a requirement
- Two variables A and B are conditionally independent given C if
- $P(a \mid b, c)=P(a \mid c) \quad \forall a, b, c$
- i.e. knowing the value of B does not change the prediction of A if the value of C is known

Conditional Independence

- Diagnosis problem

$$
F l=F l u, \quad F v=F e v e r, \quad C=\text { Cough }
$$

- Full joint distribution has $2^{3}-1=7$ independent entries
- If someone has the flu, we can assume that the probability of a cough does not depend on having a fever

$$
P(C \mid F l, F v)=P(C \mid F l)
$$

- If the patient does not have the Flu, then C and $F v$ are again conditionally independent

$$
P(C \mid \sim F l, F v)=P(C \mid \sim F l)
$$

Conditional Independence

- Full distribution can be written as

$$
\begin{aligned}
P(C, F l, F v) & =P(C, F v \mid F l) P(F l) \\
& =P(C \mid F l) P(F v \mid F l) P(F l)
\end{aligned}
$$

- That is we only need 5 numbers now!
- Huge savings if there are lots of variables

Conditional Independence

- Full distribution can be written as

$$
\begin{aligned}
P(C, F l, F v) & =P(C, F v \mid F l) P(F l) \\
& =P(C \mid F l) P(F v \mid F l) P(F l)
\end{aligned}
$$

- That is we only need 5 numbers now!
- Huge savings if there are lots of variables

Such a probability distribution is sometimes called a naïve Bayes model.
In practice, they work well - even when the independence assumption is not true

