
CS486/686 Lecture Slides (c) 2015 P. Poupart
1

Local Search
[RN2] Section 4.3
[RN3] Section 4.1

CS 486/686
University of Waterloo
Lecture 5: May 19, 2015

CS486/686 Lecture Slides (c) 2015 P. Poupart
2

Outline

• Iterative improvement algorithms
• Hill climbing search
• Simulated annealing
• Genetic algorithms

CS486/686 Lecture Slides (c) 2015 P. Poupart
3

Introduction

• So far we have studied algorithms which
systematically explore search spaces
– Keep one or more paths in memory
– When the goal is found, the solution consists of a path

to the goal

• For many problems the path is unimportant

CS486/686 Lecture Slides (c) 2015 P. Poupart
4

Examples

Vehicle routing

Channel
Routing

CS486/686 Lecture Slides (c) 2015 P. Poupart
5

Examples

Job shop
scheduling

A v ~B v C

~A v C v D

B v D v ~E

~C v ~D v ~E

…

Boolean
Satisfiability

CS486/686 Lecture Slides (c) 2015 P. Poupart
6

Introduction

• Informal characterization
– Combinatorial structure being optimized
– There is a cost function to be optimized

• At least we want to find a good solution
– Searching all possible states is infeasible
– No known algorithm for finding the solution

efficiently
– Some notion of similar states having similar costs

CS486/686 Lecture Slides (c) 2015 P. Poupart
7

Example - TSP

• Goal is to minimize the length of the route
• Constructive method:

– Start from scratch and build up a solution
• Iterative improvement method:

– Start with a solution and try to improve it

CS486/686 Lecture Slides (c) 2015 P. Poupart
8

Constructive method

• For the optimal solution we could use A*!
– But we do not really need to know how we got to

the solution – we just want the solution
– Can be very expensive to run

CS486/686 Lecture Slides (c) 2015 P. Poupart
9

Iterative improvement methods

• Idea: Imagine all possible solutions laid out
on a landscape
– We want to find the highest (or lowest) point

CS486/686 Lecture Slides (c) 2015 P. Poupart
10

Iterative improvement methods
1. Start at some random point on the

landscape
2. Generate all possible points to move to
3. Choose point of improvement and move to it
4. If you are stuck then restart

CS486/686 Lecture Slides (c) 2015 P. Poupart
11

Iterative improvement methods

• What does it mean to “generate points to
move to”
– Sometimes called generating the moveset

• Depends on the application

TSP

2-swap

CS486/686 Lecture Slides (c) 2015 P. Poupart
12

Hill-climbing
1. Start at some initial configuration
2. Let
3. Let
4. For each

Let max
and 	

5. If
	
 , return

6. Let and . Go to 3
“Like trying to find the peak of Mt Everest in the fog”,
Russell and Norvig

CS486/686 Lecture Slides (c) 2015 P. Poupart
13

Hill Climbing

• Always take a step in the direction that
improves the current solution value the most
– Greedy

• Good things about hill climbing
– Easy to program!
– Requires no memory of where we have been!
– It is important to have a “good” set of moves

• Not too many, not too few

CS486/686 Lecture Slides (c) 2015 P. Poupart
14

Hill Climbing
• Issues with hill climbing

– It can get stuck!
– Local maximum (local minimum)
– Plateaus

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

CS486/686 Lecture Slides (c) 2015 P. Poupart
15

Improving on hill climbing
• Plateaus

– Allow for sideways moves, but be careful since may
move sideways forever!

• Local Maximum
– Random restarts: “If at first you do not succeed,

try, try again”
– Random restarts works well in practice

• Randomized hill climbing
– Like hill climbing except you choose a random state

from the move set, and then move to it if it is
better than current state. Continue until bored.

CS486/686 Lecture Slides (c) 2015 P. Poupart
16

Hill climbing example: GSAT
A v ~B v C 1

~A v C v D 1

B v D v ~E 0

~C v ~D v ~E 1

~A v ~C v E 1

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied
clauses: Eval(config)=# satisfied clauses

GSAT Move_Set: Flip any 1 variable

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then with prob p pick the
move that is least bad; prob (1-p) pick a random
one

CS486/686 Lecture Slides (c) 2015 P. Poupart
17

Simulated Annealing
• Is hill climbing complete?

– No: it never makes downhill moves
– Can get stuck at local maxima (minima)

• Is a random walk complete?
– Yes: it will eventually find a solution
– But it is very inefficient

New Idea:
Allow the algorithm to make some “bad” moves in
order to escape local maxima.

CS486/686 Lecture Slides (c) 2015 P. Poupart
18

Simulated annealing
1. Let be the initial configuration and

2. Let i be a random move from the moveset
and let be the next configuration,

3. If then and
4. Else with probability , and
5. Goto 2 until you are bored

CS486/686 Lecture Slides (c) 2015 P. Poupart
19

Simulated annealing

• How should we choose the probability of
accepting a “bad” move?

– Idea 1: (or some other fixed value)?
– Idea 2: Probability that decreases with

time?
– Idea 3: Probability that decreases with

time and as increases?

CS486/686 Lecture Slides (c) 2015 P. Poupart
20

Selecting moves in simulated annealing
• If new value is better than old value then

definitely move to new solution
• If new value is worse than old value then

move to new solution with probability

Boltzmann distribution: 0 is a parameter called
temperature. It starts high and decreases over
time towards 0

If is close to 0 then the probability of making a bad
move is almost 0

CS486/686 Lecture Slides (c) 2015 P. Poupart
21

Properties of simulated annealing

• If is decreased slowly enough then
simulated annealing is guaranteed (in theory)
to reach best solution
– Annealing schedule is critical

• When is high: Exploratory phase
(random walk)

• When is low: Exploitation phase
(randomized hill climbing)

CS486/686 Lecture Slides (c) 2015 P. Poupart
22

Genetic Algorithms
• Problems are encoded into a representation

which allows certain operations to occur
– Usually use a bit string
– The representation is key – needs to be thought out

carefully
• An encoded candidate solution is an individual
• Each individual has a fitness which is a numerical

value associated with its quality of solution
• A population is a set of individuals
• Populations change over generations by applying

operations to them

CS486/686 Lecture Slides (c) 2015 P. Poupart
23

Typical genetic algorithm
• Initialize: Population consists of random

individuals (bit strings)
• Evaluate: for each , compute
• Loop

– For 1 to do
• Choose 2 parents each with probability proportional to

fitness scores
• Crossover the 2 parents to produce a new bit string (child)
• With some small probability mutate child
• Add child to the population

• Until some child is fit enough or you get bored
• Return the best child in the population

according to fitness function

CS486/686 Lecture Slides (c) 2015 P. Poupart
24

Crossover
• Consists of combining parts of individuals to

create new individuals
• Choose a random crossover point

– Cut the individuals there and swap the pieces
101|0101 011|1110

Cross over

011|0101 101|1110

Implementation: use a crossover mask m
Given two parents a and b the offsprings are

∧ ∨ ∧ ~ and ∧ ~ ∨ ∧

CS486/686 Lecture Slides (c) 2015 P. Poupart
25

Mutation

• Mutation allows us to generate desirable
features that are not present in the original
population

• Typically mutation just means flipping a bit in
the string

100111 mutates to 100101

CS486/686 Lecture Slides (c) 2015 P. Poupart
26

Genetic Algorithms

32252124

(a)
Initial Population

(b)
Fitness Function

(c)
Selection

(d)
Cross−Over

(e)
Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

CS486/686 Lecture Slides (c) 2015 P. Poupart
27

Genetic algorithms and search

• Why are genetic algorithms a type of search?
– States: possible solutions
– Operators: mutation, crossover, selection
– Parallel search: since several solutions are

maintained in parallel
– Hill-climbing on the fitness function
– Mutation and crossover allow us to get out of local

optima

CS486/686 Lecture Slides (c) 2015 P. Poupart
28

Discussion of local search
• Useful for optimization problems!
• Often the second best way to solve a problem

– If you can, use A* or linear programming or…
– But local search is easy to program

• Hill climbing always moves in the (locally) best
direction
– Can get stuck, but random restarts can be really

effective
• Simulated annealing allows moves downhill

