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Outline

• Iterative improvement algorithms
• Hill climbing search
• Simulated annealing
• Genetic algorithms
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Introduction

• So far we have studied algorithms which 
systematically explore search spaces
– Keep one or more paths in memory
– When the goal is found, the solution consists of a path 

to the goal 

• For many problems the path is unimportant
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Examples

Vehicle routing

Channel 
Routing
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Examples

Job shop 
scheduling

A v ~B v C

~A v C v D

B v D v ~E

~C v ~D v ~E

…

Boolean 
Satisfiability
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Introduction

• Informal characterization
– Combinatorial structure being optimized
– There is a cost function to be optimized 

• At least we want to find a good solution
– Searching all possible states is infeasible
– No known algorithm for finding the solution 

efficiently
– Some notion of similar states having similar costs
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Example - TSP

• Goal is to minimize the length of the route
• Constructive method:

– Start from scratch and build up a solution
• Iterative improvement method:

– Start with a solution and try to improve it
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Constructive method

• For the optimal solution we could use A*!
– But we do not really need to know how we got to 

the solution – we just want the solution
– Can be very expensive to run
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Iterative improvement methods

• Idea:  Imagine all possible solutions laid out 
on a landscape
– We want to find the highest (or lowest) point
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Iterative improvement methods
1. Start at some random point on the 

landscape
2. Generate all possible points to move to
3. Choose point of improvement and move to it
4. If you are stuck then restart
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Iterative improvement methods

• What does it mean to “generate points to 
move to”
– Sometimes called generating the moveset

• Depends on the application

TSP

2-swap
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Hill-climbing
1. Start at some initial configuration ܵ
2. Let ܸ ൌ ሺܵሻ݈ܽݒܧ

3. Let ܰ ൌ ሺܵሻݐ݁ܵ݁ݒ݋ܯ

4. For each ܺ݅ܰ
Let ܸ݉ܽݔ ൌ max

௜
݈ܽݒܧ ܺ݅

and ܺ݉ܽݔ ൌ ሺ݈ܽݒܧ	݅ݔܽ݉݃ݎܽ ௜ܺሻ

5. If ܸ݉ܽݔ		ܸ, return ܵ
6. Let ܵ ൌ ݔܽ݉ܺ and ܸ ൌ Go to 3 .ݔܸܽ݉

“Like trying to find the peak of Mt Everest in the fog”, 
Russell and Norvig
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Hill Climbing

• Always take a step in the direction that 
improves the current solution value the most
– Greedy

• Good things about hill climbing
– Easy to program!
– Requires no memory of where we have been!
– It is important to have a “good” set of moves

• Not too many, not too few
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Hill Climbing
• Issues with hill climbing

– It can get stuck!
– Local maximum (local minimum)
– Plateaus

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder
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Improving on hill climbing
• Plateaus

– Allow for sideways moves, but be careful since may 
move sideways forever!

• Local Maximum
– Random restarts: “If at first you do not succeed, 

try, try again”
– Random restarts works well in practice

• Randomized hill climbing
– Like hill climbing except you choose a random state 

from the move set, and then move to it if it is 
better than current state.  Continue until bored.
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Hill climbing example: GSAT
A v ~B v C  1

~A v C v D  1

B v D v ~E  0

~C v ~D v ~E  1

~A v ~C v E  1

Configuration A=1, B=0, C=1, D=0, E=1

Goal is to maximize the number of satisfied 
clauses: Eval(config)=# satisfied clauses

GSAT Move_Set: Flip any 1 variable

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then  with prob p  pick the 
move that is least bad; prob (1-p) pick a random 
one
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Simulated Annealing
• Is hill climbing complete?

– No: it never makes downhill moves
– Can get stuck at local maxima (minima)

• Is a random walk complete?
– Yes: it will eventually find a solution
– But it is very inefficient

New Idea: 
Allow the algorithm to make some “bad” moves in 
order to escape local maxima.  
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Simulated annealing
1. Let ܵ be the initial configuration and 

ܸ ൌ ሺܵሻ݈ܽݒܧ

2. Let i be a random move from the moveset
and let ܵ݅ be the next configuration, 
ܸ݅ ൌ ሺ݈ܽݒܧ ௜ܵሻ

3. If ܸ ൏ ௜ܸ then ܵ ൌ ௜ܵ and ܸ ൌ ௜ܸ

4. Else with probability ݌, ܵ ൌ ௜ܵ and ܸ ൌ ௜ܸ

5. Goto 2 until you are bored
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Simulated annealing

• How should we choose the probability of 
accepting a “bad” move?

– Idea 1: ݌ ൌ 0.1 (or some other fixed value)?
– Idea 2: Probability that decreases with 

time?
– Idea 3: Probability that decreases with 

time and as ܸ െ ௜ܸ increases?
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Selecting moves in simulated annealing
• If new value ܸ݅ is better than old value ܸ then 

definitely move to new solution
• If new value ܸ݅ is worse than old value ܸ then 

move to new solution with probability

ሺെሺܸ݌ݔܧ െ ௜ܸሻ/ܶሻ

Boltzmann distribution: ܶ ൐ 0 is a parameter called 
temperature.  It starts high and decreases over 
time towards 0

If ܶ is close to 0 then the probability of making a bad 
move is almost 0
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Properties of simulated annealing

• If ܶ is decreased slowly enough then 
simulated annealing is guaranteed (in theory) 
to reach best solution
– Annealing schedule is critical

• When ܶ is high: Exploratory phase
(random walk)

• When ܶ is low: Exploitation phase
(randomized hill climbing)
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Genetic Algorithms
• Problems are encoded into a representation 

which allows certain operations to occur
– Usually use a bit string 
– The representation is key – needs to be thought out 

carefully
• An encoded candidate solution is an individual
• Each individual has a fitness which is a numerical 

value associated with its quality of solution
• A population is a set of individuals
• Populations change over generations by applying 

operations to them
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Typical genetic algorithm
• Initialize: Population ܲ consists of ܰ random 

individuals (bit strings)
• Evaluate: for each ݔܲ, compute ݂݅ݏݏ݁݊ݐሺݔሻ
• Loop

– For ݅ ൌ 1 to ܰ do
• Choose 2 parents each with probability proportional to 

fitness scores
• Crossover the 2 parents to produce a new bit string (child)
• With some small probability mutate child
• Add child to the population

• Until some child is fit enough or you get bored
• Return the best child in the population 

according to fitness function
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Crossover
• Consists of combining parts of individuals to 

create new individuals
• Choose a random crossover point

– Cut the individuals there and swap the pieces
101|0101                 011|1110

Cross over

011|0101                 101|1110

Implementation: use a crossover mask m
Given two parents a and b the offsprings are
ሺܽ ∧ ݉ሻ ∨ ܾ ∧ ~݉ and ሺܽ ∧ ~݉ሻ ∨ ሺܾ ∧ ݉ሻ
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Mutation

• Mutation allows us to generate desirable 
features that are not present in the original 
population

• Typically mutation just means flipping a bit in 
the string

100111 mutates to 100101
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Genetic Algorithms
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Genetic algorithms and search

• Why are genetic algorithms a type of search?
– States: possible solutions
– Operators: mutation, crossover, selection
– Parallel search: since several solutions are 

maintained in parallel
– Hill-climbing on the fitness function
– Mutation and crossover allow us to get out of local 

optima

CS486/686 Lecture Slides (c) 2015  P. Poupart
28

Discussion of local search
• Useful for optimization problems!
• Often the second best way to solve a problem

– If you can, use A* or linear programming or…
– But local search is easy to program 

• Hill climbing always moves in the (locally) best 
direction
– Can get stuck, but random restarts can be really 

effective
• Simulated annealing allows moves downhill


