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Deep Neural Network

+ Definition: neural network with many hidden
layers

* Advantage: high expressivity
* Challenges:

- How should we train a deep neural network?
- How can we avoid overfitting?



Expressivity

* Neural networks with one hidden layer of
sigmoid/hyperbolic units can approximate
arbitrarily closely neural networks with several
layers of sigmoid/hyperbolic units

+ However as we increase the number of layers,
the number of units needed may decrease
exponentially (with the number of layers)



Example - Parity Function

» Single layer of hidden nodes
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Example - Parity Function
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Vanishing Gradients

* Deep neural networks of sigmoid and
hyperbolic units often suffer from
vanishing gradients

small medium large
gradient gradient __ gradient
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Sigmoid and hyperbolic units

* Derivative is always less than 1
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Simple Example
e Y = o (W, o (Ws o (W, (W X))))
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Common weight initialization in (-1,1)

Sigmoid function and its derivative always less than 1

This leads to vanishing gradients:
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Avoiding Vanishing Gradients

» Two popular solutions:
- Pre-training
- Rectified linear units
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Rectified Linear Units

+ Rectified linear: g(x) = max(0, x)
- Gradient isOor 1

- Sparse computation

- Soft version
("Softplus”):
g(x) =log(1+e*)




Overfitting

* High expressivity increases the risk of
overfitting

- # of parameters is often larger than the
amount of data

» Solution: dropout
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Dropout

» Idea: randomly “"drop” some units from the
network when training

» Training: at each iteration of gradient descent
- Each hidden unit is dropped with prob. 0.5
- Each input unit is dropped with prob. 0.2

» Prediction (testing):

- Multiply the output of each unit by one minus its
drop probability



Intuition

» Dropout can be viewed as an approximate
form of ensemble learning

» In each training iteration, a different
subnetwork is trained

+ At test time, these subnetworks are
"merged” by averaging their weights
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Robustness

+ In sexual reproduction, half of the genes of
two individuals are dropped and the remaining
genes are merged to produce a new individual

* Genes are forced to evolve independently so
that most combinations yield functional
individuals

+ Similarly, units in a neural net are forced to
capture features that are largely independent
of other units



Applications of Deep Neural
Networks

» Speech Recognition
- Image recognition

* Machine translation
» Control

» Any application of shallow neural
networks
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Acoustic Modeling in Speech
Recognition

Architecture of a DNN-HMM hybrid
system
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Acoustic Modeling in Speech
Recognition

TABLE III
A comparison of the Percentage Word Error Rates using DNN-HMMs and GMM-HMMs on five different large vocabulary tasks.

task hours of DNN-HMM | GMM-HMM GMM-HMM
training data with same data | with more data

Switchboard (test set 1) | 309 18.5 274 18.6 (2000 hrs)

Switchboard (test set 2) | 309 16.1 236 17.1 (2000 hrs)

English Broadcast News | 50 17.5 18.8

Bing Voice Search 24 30.4 36.2

(Sentence error rates)

Google Voice Input 5,870 12.3 16.0 (=>>5870hrs)

Youtube 1,400 47.6 52.3
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Image Recognition

» Convolutional Neural Network
- With rectified linear units and dropout
- Data augmentation for transformation invariance
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ImageNet Breakthrough

» Results: ILSVRC-2012
* From Krizhevsky, Sutskever, Hinton

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — — 26.2%

| CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

| CNN* 39.0% 16.6% —

7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk® were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.
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I'mageNet Breakthrough
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.
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