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Outline

• Deep Neural Networks
– Gradient Vanishing

• Rectified linear units
– Overfitting

• Dropout

• Breakthroughs
– Acoustic modeling in speech recognition
– Image recognition
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Deep Neural Network

• Definition: neural network with many hidden 
layers

• Advantage: high expressivity
• Challenges:

– How should we train a deep neural network?
– How can we avoid overfitting?
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Expressivity

• Neural networks with one hidden layer of 
sigmoid/hyperbolic units can approximate 
arbitrarily closely neural networks with several 
layers of sigmoid/hyperbolic units

• However as we increase the number of layers, 
the number of units needed may decrease 
exponentially (with the number of layers)
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Example – Parity Function

• Single layer of hidden nodes

inputs
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Example – Parity Function
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Vanishing Gradients

• Deep neural networks of sigmoid and 
hyperbolic units often suffer from 
vanishing gradients

large 
gradient

medium 
gradient

small 
gradient
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Sigmoid and hyperbolic units

• Derivative is always less than 1

sigmoid hyperbolic
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Simple Example
• 	 	 	 	

• Common weight initialization in (-1,1)
• Sigmoid function and its derivative always less than 1
• This leads to vanishing gradients:
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Avoiding Vanishing Gradients

• Two popular solutions:
– Pre-training
– Rectified linear units
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Rectified Linear Units

• Rectified linear: 
– Gradient is 0 or 1
– Sparse computation

• Soft version
(“Softplus”) :
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Overfitting

• High expressivity increases the risk of 
overfitting
– # of parameters is often larger than the 

amount of data

• Solution: dropout
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Dropout

• Idea: randomly “drop” some units from the 
network when training

• Training: at each iteration of gradient descent
– Each hidden unit is dropped with prob. 0.5
– Each input unit is dropped with prob. 0.2

• Prediction (testing):
– Multiply the output of each unit by one minus its 

drop probability
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Intuition

• Dropout can be viewed as an approximate 
form of ensemble learning

• In each training iteration, a different 
subnetwork is trained

• At test time, these subnetworks are 
“merged” by averaging their weights
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Robustness

• In sexual reproduction, half of the genes of 
two individuals are dropped and the remaining 
genes are merged to produce a new individual

• Genes are forced to evolve independently so 
that most combinations yield functional 
individuals

• Similarly, units in a neural net are forced to 
capture features that are largely independent 
of other units
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Applications of Deep Neural 
Networks

• Speech Recognition
• Image recognition
• Machine translation
• Control
• Any application of shallow neural 

networks
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Acoustic Modeling in Speech 
Recognition
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Acoustic Modeling in Speech 
Recognition
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Image Recognition

• Convolutional Neural Network
– With rectified linear units and dropout
– Data augmentation for transformation invariance
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ImageNet Breakthrough

• Results: ILSVRC-2012
• From Krizhevsky, Sutskever, Hinton
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ImageNet Breakthrough

• From Krizhevsky, Sutskever, Hinton


