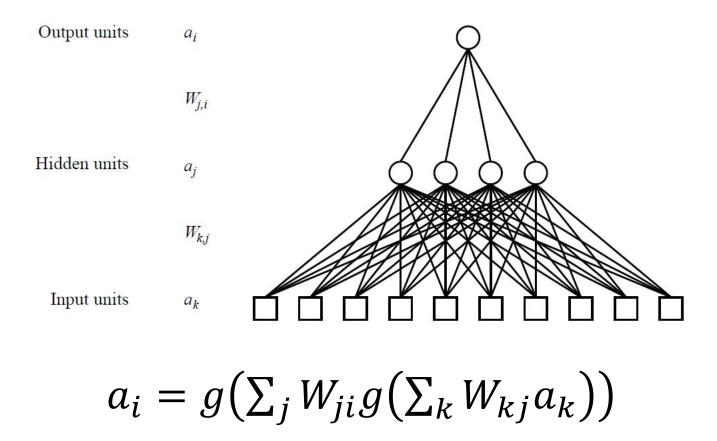
Multi-Layer Neural Networks [RN2] Sec 20.5 [RN3] Sec 18.7

CS 486/686 University of Waterloo Lecture 20: July 9, 2015

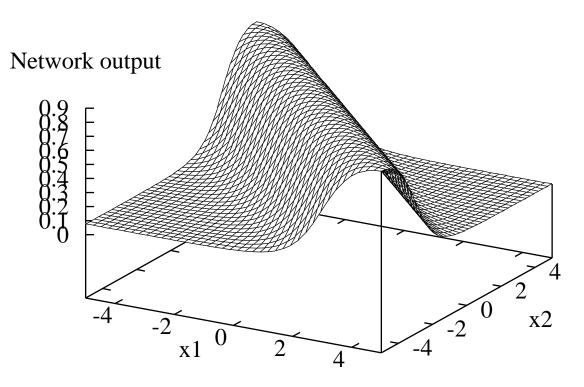
Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- With multiple layers, what fns can be represented?
 - Virtually any function!



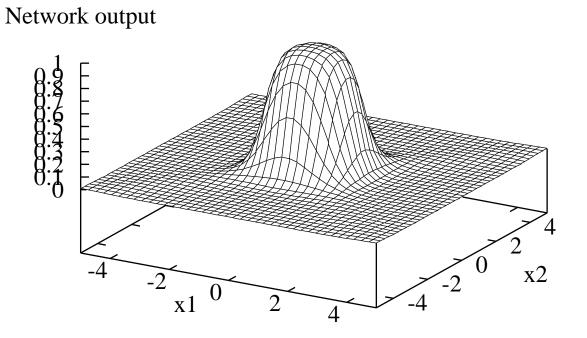
CS486/686 Lecture Slides (c) 2015 P. Poupart

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge



CS486/686 Lecture Slides (c) 2015 P. Poupart

 Adding two intersecting ridges (and thresholding) produces a bump



CS486/686 Lecture Slides (c) 2015 P. Poupart

- By tiling bumps of various heights together, we can approximate any function
- Theorem: Neural networks with at least one hidden layer of sufficiently many sigmoid units can approximate any function arbitrarily closely.

Common Activation Functions

• Threshold:
$$h(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

• Sigmoid:
$$h(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

• Gaussian:
$$h(x) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

• Hyperbolic tangent:
$$h(x) = \tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

• Identity:
$$h(x) = x$$

Weight Training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

Least squared error

• Error function $E(W) = \frac{1}{2} \sum_{n} E_{n}(W)^{2} = \frac{1}{2} \sum_{n} \left| \left| f(x_{n}, W) - y_{n} \right| \right|_{2}^{2}$ where x_{n} is the input of the n^{th} example y_{n} is the label of the n^{th} example $f(x_{n}, W)$ is the output of the neural net

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$W_{ji} \leftarrow W_{ji} - \alpha \frac{\partial E_n}{\partial W_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm

Backpropagation

- Back-Prop-Learning(examples, network)
 - Repeat
 - For each example e do
 - Compute output a of each node in **forward** pass
 - » Input nodes: $a_j \leftarrow x_j[e]$
 - » Other nodes: $in_i \leftarrow \sum_j W_{ji}a_j$ and $a_i \leftarrow g(in_i)$
 - Compute modified error Δ of each node in **backward** pass (l = L to 1)
 - » Output nodes: $\Delta_i \leftarrow g'(in_i) (y_i[e] a_i)$
 - » For each node j in layer $l: \Delta_j \leftarrow g'(in_j) \sum_i W_{ji} \Delta_i$
 - » For each node *i* in layer l + 1: $W_{ji} \leftarrow W_{ji} + \alpha a_j \Delta_i$
 - Until some stopping criteria satisfied
 - Return learnt network

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output a_i at unit i:

$$a_i = g(in_i)$$
 where $in_i = \sum_j W_{ji}a_j$

Backward phase

 Use chain rule to recursively compute gradient

- For each weight
$$W_{ji}$$
: $\frac{\partial E_n}{\partial W_{ji}} = \frac{\partial E_n}{\partial in_i} \frac{\partial in_i}{\partial W_{ji}} = \Delta_i a_j$

- Let
$$\Delta_i \equiv \frac{\partial E_n}{\partial i n_i}$$
 then

 $\Delta_{i} = \begin{cases} g'(in_{i})(y_{i} - a_{i}) & \text{base case: } i \text{ is an output unit} \\ g'(in_{i}) \sum_{j} W_{ji} \Delta_{j} & \text{recursion: } i \text{ is a hidden unit} \end{cases}$

- Since
$$in_i = \sum_j W_{ji}a_j$$
 then $\frac{\partial in_i}{\partial W_{ji}} = a_j$

Simple Example

- Consider a network with two layers:
 - Hidden nodes: $g(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
 - Tip: $tanh'(x) = 1 tanh^2(x)$
 - Output node: g(x) = x
- Objective: squared error

Simple Example

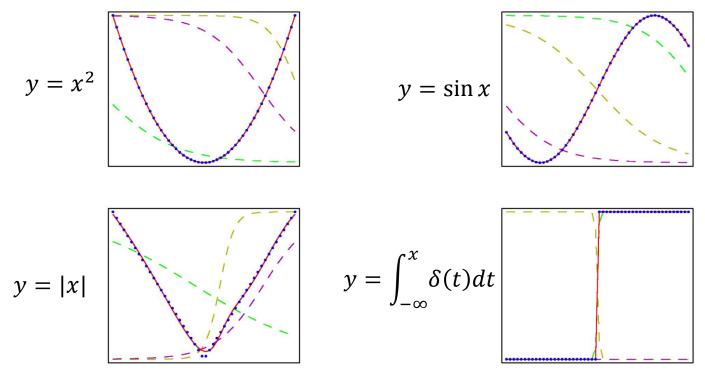
- Forward propagation:
 - Hidden units: $in_i =$
 - Output units: $in_i =$
- Backward propagation:
 - Output units: $\Delta_i =$
 - Hidden units: $\Delta_i =$
- Gradients:
 - Hidden layers: $\frac{\partial E_n}{\partial W_{kj}} =$

- Output layer:
$$\frac{\partial E_n}{\partial W_{ji}} =$$

 $a_j = a_i =$

Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit



CS485/685 (c) 2012 P. Poupart

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective)

Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
 - Speech recognition
 - Character recognition
 - Paint-quality inspection
 - Vision-based autonomous driving
 - Etc.