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Multilayer Feed-forward 
Neural Networks 

• Perceptron can only represent (soft) 
linear separators
– Because single layer

• With multiple layers, what fns can be 
represented?
– Virtually any function!
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Multilayer Networks

∑ ∑
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Multilayer Networks 

• Adding two sigmoid units with parallel 
but opposite “cliffs” produces a ridge
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Multilayer Networks 

• Adding two intersecting ridges (and 
thresholding) produces a bump
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Multilayer Networks 
• By tiling bumps of various heights to-

gether, we can approximate any function

• Theorem: Neural networks with at least 
one hidden layer of sufficiently many 
sigmoid units can approximate any 
function arbitrarily closely.
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Common Activation Functions

• Threshold: 1 0
1 0

• Sigmoid: 

• Gaussian: 

• Hyperbolic tangent: tanh

• Identity: 
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Weight Training

• Parameters: , , …
• Objectives:

– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning
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Least squared error
• Error function
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where is the input of the example
is the label of the 	example
, is the output of the neural net
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Sequential Gradient Descent 
• For each example , adjust the weights 

as follows:

←

• How can we compute the gradient efficiently 
given an arbitrary network structure?

• Answer: backpropagation algorithm
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Backpropagation
• Back-Prop-Learning(examples,network)

– Repeat
• For each example do

– Compute output of each node in forward pass
» Input nodes: ←

» Other nodes: ← ∑ and ←

– Compute modified error ∆ of each node in backward pass ( to 1)
» Output nodes: ∆ 	← 	

» For each node in layer : ∆ 	← ∑ ∆

» For each node in layer 1: ← 	 	∆

– Until some stopping criteria satisfied
– Return learnt network

Forward phase
• Propagate inputs forward to compute the 

output of each unit
• Output at unit :

where    ∑
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Backward phase
• Use chain rule to recursively compute 

gradient
– For each weight : ∆

– Let ∆ ≡ then

∆ 	
′
′ ∑ ∆ 			base	case: 	is	an	output	unit

recursion: 	is	a	hidden	unit

– Since ∑ then 
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Simple Example

• Consider a network with two layers:
– Hidden nodes: tanh

• Tip: 1

– Output node: 

• Objective: squared error
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Simple Example
• Forward propagation: 

– Hidden units: 
– Output units: 

• Backward propagation:
– Output units: ∆
– Hidden units: ∆

• Gradients:
– Hidden layers: 

– Output layer: 
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Non-linear regression 
examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

sin

| |
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Analysis
• Efficiency: 

– Fast gradient computation: linear in number of weights

• Convergence: 
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting
– Solutions: early stopping, regularization (add 

penalty term to objective) 
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Neural Net Applications 

• Neural nets can approximate any 
function, hence 1000’s of applications
– Speech recognition
– Character recognition
– Paint-quality inspection
– Vision-based autonomous driving
– Etc.


