
Neural Networks
[RN2] Sec 20.5
[RN3] Sec 18.7

CS 486/686
University of Waterloo
Lecture 19: July 7, 2015

CS486/686 Lecture Slides (c) 2015 P. Poupart 2

Outline

• Neural networks
– Perceptron
– Supervised learning algorithms for neural

networks

CS486/686 Lecture Slides (c) 2015 P. Poupart 3

Brain

• Seat of human intelligence
• Where memory/knowledge resides
• Responsible for thoughts and decisions
• Can learn
• Consists of nerve cells called neurons

CS486/686 Lecture Slides (c) 2015 P. Poupart 4

Neuron

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

CS486/686 Lecture Slides (c) 2015 P. Poupart 5

Comparison
• Brain

– Network of neurons
– Nerve signals propagate in a neural network
– Parallel computation
– Robust (neurons die everyday without any impact)

• Computer
– Bunch of gates
– Electrical signals directed by gates
– Sequential and parallel computation
– Fragile (if a gate stops working, computer crashes)

CS486/686 Lecture Slides (c) 2015 P. Poupart 6

Artificial Neural Networks
• Idea: mimic the brain to do computation

• Artificial neural network:
– Nodes (a.k.a. units) correspond to neurons
– Links correspond to synapses

• Computation:
– Numerical signal transmitted between nodes

corresponds to chemical signals between neurons
– Nodes modifying numerical signal correspond to

neurons firing rate

CS486/686 Lecture Slides (c) 2015 P. Poupart 7

ANN Unit

• For each unit i:

• Weights: Wji
– Strength of the link from unit j to unit i
– Input signals aj weighted by Wji and linearly

combined: ini = Σj Wji aj

• Activation function: g
– Numerical signal produced: ai = g(ini)

CS486/686 Lecture Slides (c) 2015 P. Poupart 8

ANN Unit

Output

a = g(in) ii

aj
Wj,i

 Input
 Function

g
ini

Σ ia

Input
Links

Output
 Links

Activation
 Function

W0,i
a0 = −1 Bias Weight

CS486/686 Lecture Slides (c) 2015 P. Poupart 9

Activation Function

• Should be nonlinear
– Otherwise network is just a linear function

• Often chosen to mimic firing in neurons
– Unit should be “active” (output near 1) when

fed with the “right” inputs
– Unit should be “inactive” (output near 0)

when fed with the “wrong” inputs

CS486/686 Lecture Slides (c) 2015 P. Poupart 10

Common Activation Functions

(a) (b)

+1

ini

g()ini

+1

ini

g()ini

Threshold Sigmoid

g(x) = 1/(1+e-x)

CS486/686 Lecture Slides (c) 2015 P. Poupart 11

Logic Gates

• McCulloch and Pitts (1943)
– Design ANNs to represent Boolean fns

• What should be the weights of the
following units to code AND, OR, NOT ?

-1 -1 -1
a1 a1

a1
a2 a2

thresh thresh thresh

CS486/686 Lecture Slides (c) 2015 P. Poupart 12

Network Structures

• Feed-forward network
– Directed acyclic graph
– No internal state
– Simply computes outputs from inputs

• Recurrent network
– Directed cyclic graph
– Dynamical system with internal states
– Can memorize information

CS486/686 Lecture Slides (c) 2015 P. Poupart 13

Feed-forward network

• Simple network with two inputs, one
hidden layer of two units, one output unit

a5 = g(W3,5a3 + W4,5a4)
= g(W3,5g(W1,3a1 + W2,3a2) + W4,5g(W1,4a1 + W2,4a2))

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

CS486/686 Lecture Slides (c) 2015 P. Poupart 14

Perceptron

• Single layer feed-forward network

Input
Units Units

Output
Wj,i

CS486/686 Lecture Slides (c) 2015 P. Poupart 15

Supervised Learning

• Given list of <input,output> pairs
• Train feed-forward ANN

– To compute proper outputs when fed with
inputs

– Consists of adjusting weights Wji

• Simple learning algorithm for threshold
perceptrons

CS486/686 Lecture Slides (c) 2015 P. Poupart 16

Threshold Perceptron Learning

• Learning is done separately for each unit
– Since units do not share weights

• Perceptron learning for unit i:
– For each <inputs,output> pair do:

• Case 1: correct output produced
j Wji  Wji

• Case 2: output produced is 0 instead of 1
j Wji  Wji + aj

• Case 3: output produced is 1 instead of 0
j Wji  Wji – aj

– Until correct output for all training instances

CS486/686 Lecture Slides (c) 2015 P. Poupart 17

Threshold Perceptron Learning

• Dot products: a●a  0 and -a●a  0

• Perceptron computes
1 when a●W = Σj ajWji ≥ 0
0 when a●W = Σj ajWji < 0

• If output should be 1 instead of 0 then
W W+a since a●(W+a)  a●W

• If output should be 0 instead of 1 then
W W-a since a●(W-a)  a●W

CS486/686 Lecture Slides (c) 2015 P. Poupart 18

Threshold Perceptron
Hypothesis Space

• Hypothesis space hW:
– All binary classifications with parameters W s.t.

a●W ≥ 0  1
a●W < 0  0

• Since a●W is linear in W, perceptron is called a
linear separator

• Theorem: threshold perceptron learning
converges iff the data is linearly separable.

CS486/686 Lecture Slides (c) 2015 P. Poupart 19

Threshold Perceptron
Hypothesis Space

• Are all Boolean gates linearly separable?
I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)

0 1

0

1

0

1 1

0

0 1 0 1

xor I 2I 1orI 1 I 2and I 1 I 2

CS486/686 Lecture Slides (c) 2015 P. Poupart 20

Example: Threshold Perceptron Learning
• AND gate Data: {(0,0)0, (0,1)0, (1,0)0, (1,1)1}

Inputs
,૙࢞ ,૚࢞ ૛࢞

Output
ݕ

Weights
଴ܹ, ଵܹ, ଶܹ

Prediction
ሻ࢞ሺࢃࢎ

error

1,0,0 0 0.1, -0.2, 0.3 1 yes

1,0,1 0

1,1,0 0

1,1,1 1

1,0,0 0

1,0,1 0

1,1,0 0

1,1,1 1

1,0,0 0

1,0,1 0

1,1,0 0

1,1,1 1

1,0,0 0

1,0,1 0

CS486/686 Lecture Slides (c) 2015 P. Poupart 21

Sigmoid Perceptron

• Represent “soft” linear separators

CS486/686 Lecture Slides (c) 2015 P. Poupart 22

Sigmoid Perceptron Learning

• Formulate learning as an optimization
search in weight space
– Since g differentiable, use gradient descent

• Minimize squared error:
E = 0.5 Err2 = 0.5 (y – hW(x))2

• x: input
• y: target output
• hW(x): computed output

CS486/686 Lecture Slides (c) 2015 P. Poupart 23

Perceptron Error Gradient

• E = 0.5 Err2 = 0.5 (y – hW(x))2

• E/Wj = Err Err/Wj
= Err (y – g(Σj Wjxj))/Wj
= -Err g’(Σj Wjxj) xj

• When g is sigmoid fn, then g’ = g(1-g)

CS486/686 Lecture Slides (c) 2015 P. Poupart 24

Perceptron Learning Algorithm
• Perceptron-Learning(examples,network)

– Repeat
• For each e in examples do

in  Σj Wjxj[e]
Err  y[e] – g(in)
Wj  Wj +  Err g’(in) xj[e]

– Until some stopping criteria satisfied
– Return learnt network

• N.B.  is a learning rate corresponding to the
step size in gradient descent

CS486/686 Lecture Slides (c) 2015 P. Poupart 25

Multilayer Feed-forward
Neural Networks

• Perceptron can only represent (soft)
linear separators
– Because single layer

• Need multiple layers to represent more
complicated separators

