Neural Networks [RN2] Sec 20.5 [RN3] Sec 18.7

CS 486/686
University of Waterloo
Lecture 19: July 7, 2015

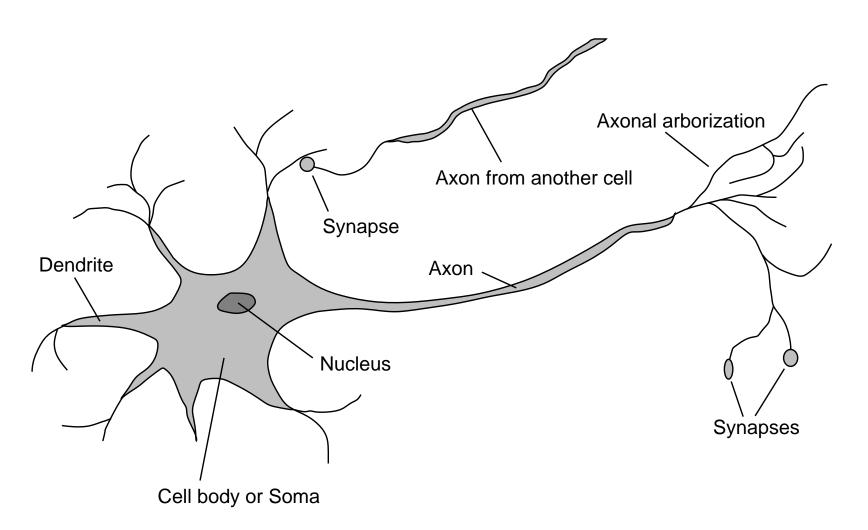
Outline

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Brain

- · Seat of human intelligence
- · Where memory/knowledge resides
- Responsible for thoughts and decisions
- · Can learn
- Consists of nerve cells called neurons

Neuron



Comparison

· Brain

- Network of neurons
- Nerve signals propagate in a neural network
- Parallel computation
- Robust (neurons die everyday without any impact)

· Computer

- Bunch of gates
- Electrical signals directed by gates
- Sequential and parallel computation
- Fragile (if a gate stops working, computer crashes)

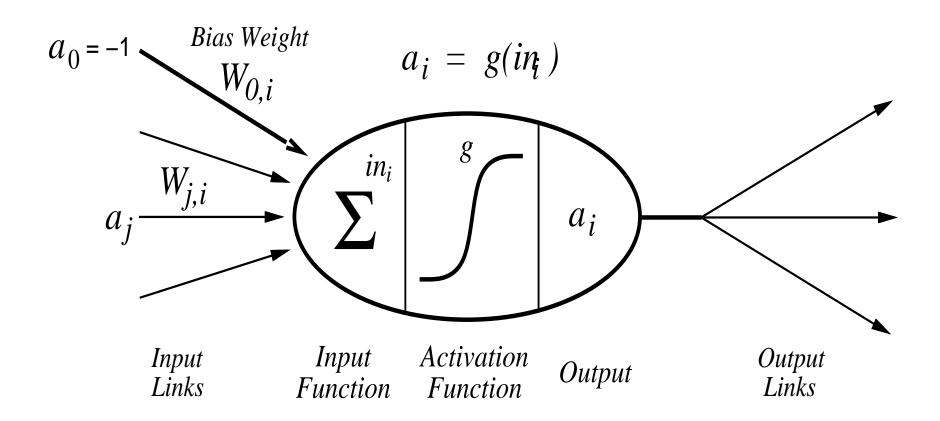
Artificial Neural Networks

- Idea: mimic the brain to do computation
- · Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal correspond to neurons firing rate

ANN Unit

- For each unit i:
- Weights: W_{ji}
 - Strength of the link from unit j to unit i
 - Input signals a_j weighted by W_{ji} and linearly combined: $in_i = \Sigma_j \ W_{ji} \ a_j$
- Activation function: g
 - Numerical signal produced: $a_i = g(in_i)$

ANN Unit

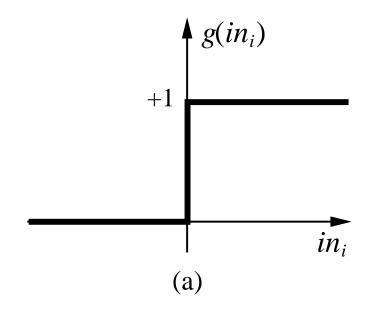


Activation Function

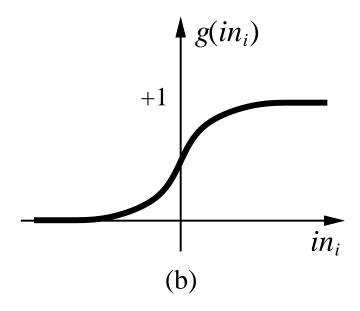
- Should be nonlinear
 - Otherwise network is just a linear function
- · Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0)
 when fed with the "wrong" inputs

Common Activation Functions

Threshold



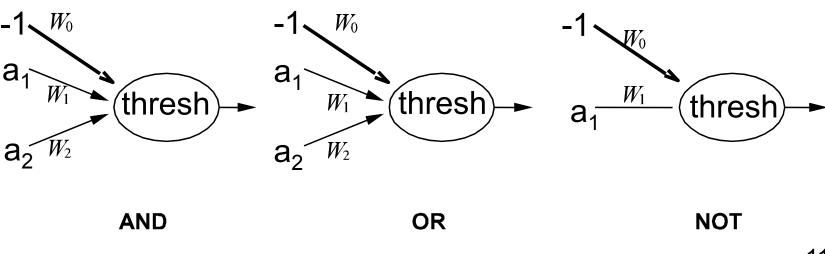
Sigmoid



$$g(x) = 1/(1+e^{-x})$$

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean fns
- What should be the weights of the following units to code AND, OR, NOT?

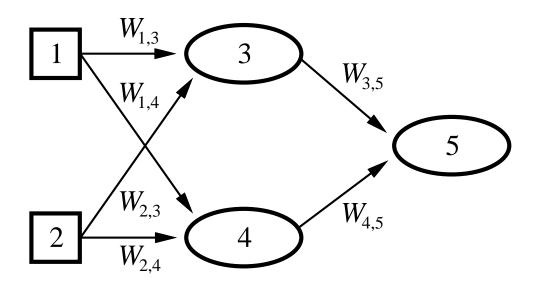


Network Structures

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit



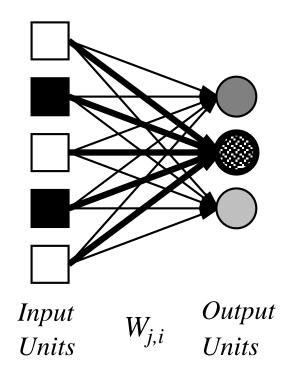
$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

$$= g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$$

$$(CS486/686 Lecture Slides (c) 2015 P. Poupart)$$

Perceptron

· Single layer feed-forward network



Supervised Learning

- · Given list of <input,output> pairs
- Train feed-forward ANN
 - To compute proper outputs when fed with inputs
 - Consists of adjusting weights W_{ji}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- · Learning is done separately for each unit
 - Since units do not share weights
- Perceptron learning for unit i:
 - For each <inputs,output> pair do:
 - Case 1: correct output produced $\forall_j W_{ji} \leftarrow W_{ji}$
 - Case 2: output produced is 0 instead of 1 $\forall_i W_{ii} \leftarrow W_{ii} + a_i$
 - Case 3: output produced is 1 instead of 0 $\forall_j W_{ji} \leftarrow W_{ji} a_j$
 - Until correct output for all training instances

Threshold Perceptron Learning

- Dot products: $a \bullet a \ge 0$ and $-a \bullet a \le 0$
- Perceptron computes

```
1 when a \cdot W = \sum_{j} a_{j} W_{ji} \ge 0
0 when a \cdot W = \sum_{i} a_{i} W_{ii} < 0
```

- If output should be 1 instead of 0 then
 W ← W+a since a (W+a) ≥ a W
- If output should be 0 instead of 1 then
 W ← W-a since a (W-a) ≤ a W

Threshold Perceptron Hypothesis Space

- Hypothesis space h_w:
 - All binary classifications with parameters W s.t.

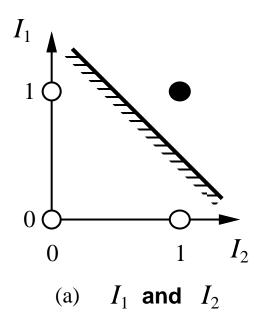
$$a \bullet W \ge 0 \rightarrow 1$$

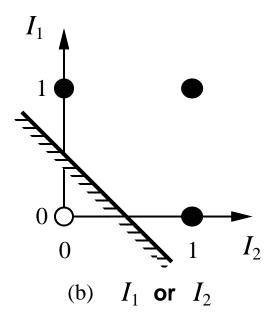
 $a \bullet W < 0 \rightarrow 0$

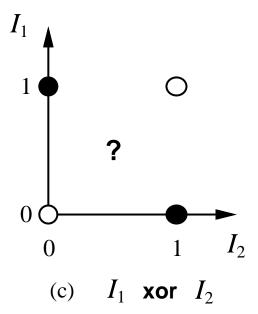
- Since a W is linear in W, perceptron is called a linear separator
- Theorem: threshold perceptron learning converges iff the data is linearly separable.

Threshold Perceptron Hypothesis Space

Are all Boolean gates linearly separable?







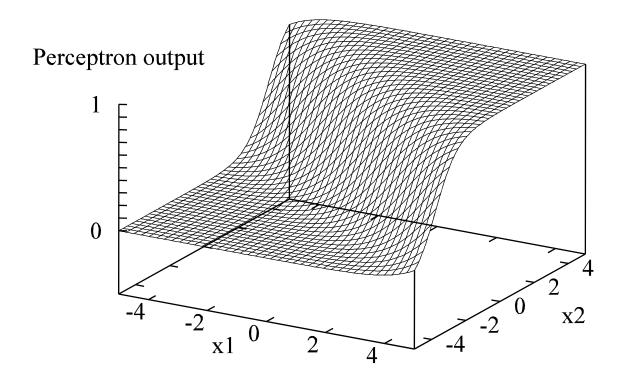
Example: Threshold Perceptron Learning

• AND gate Data: $\{(0,0)\rightarrow 0, (0,1)\rightarrow 0, (1,0)\rightarrow 0, (1,1)\rightarrow 1\}$

Inputs x_0, x_1, x_2	Output y		$\begin{array}{c} Prediction \\ h_W(x) \end{array}$	error
1,0,0	0	0.1, -0.2, 0.3	1	yes
1,0,1	0			
1,1,0	0			
1,1,1	1			
1,0,0	0			
1,0,1	0			
1,1,0	0			
1,1,1	1			
1,0,0	0			
1,0,1	0			
1,1,0	0			
1,1,1	1			
1,0,0	0			
1,0,1	0			

Sigmoid Perceptron

· Represent "soft" linear separators



Sigmoid Perceptron Learning

- Formulate learning as an optimization search in weight space
 - Since g differentiable, use gradient descent
- · Minimize squared error:

$$E = 0.5 Err^2 = 0.5 (y - h_w(x))^2$$

- · x: input
- · y: target output
- · hw(x): computed output

Perceptron Error Gradient

• E = 0.5 Err² = 0.5 $(y - h_W(x))^2$

•
$$\partial E/\partial W_{j} = \operatorname{Err} \partial \operatorname{Err}/\partial W_{j}$$

= $\operatorname{Err} \partial (y - g(\Sigma_{j} W_{j}x_{j}))/\partial W_{j}$
= $-\operatorname{Err} g'(\Sigma_{j} W_{j}x_{j}) x_{j}$

• When g is sigmoid fn, then g' = g(1-g)

Perceptron Learning Algorithm

- Perceptron-Learning(examples,network)
 - Repeat
 - For each e in examples do

```
in \leftarrow \Sigma_{j} W_{j} x_{j}[e]

Err \leftarrow y[e] - g(in)

W_{j} \leftarrow W_{j} + \alpha \text{ Err } g'(in) x_{j}[e]
```

- Until some stopping criteria satisfied
- Return learnt network
- N.B. α is a learning rate corresponding to the step size in gradient descent

Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- Need multiple layers to represent more complicated separators