Ensemble Learning [RN2] Sec 18.4 [RN3] Sec 18.10

CS 486/686 University of Waterloo Lecture 18: July 2, 2015

Outline

- Ensemble Learning
 - Bagging
 - Boosting

86/686 Lecture Slides (c) 2015 P. Poupart

Supervised Learning

- · So far...
 - Decision trees
 - Statistical learning
 - · Bayesian Learning
 - · Maximum a posteriori
 - · Maximum likelihood
- · Which technique should we pick?

CS486/686 Lecture Slides (c) 2015 P. Poupart

3

Ensemble Learning

- Sometimes each learning technique yields a different hypothesis
- But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

CS486/686 Lecture Slides (c) 2015 P. Poupar

Ensemble Learning

- Analogies:
 - Elections combine voters' choices to pick a good
 - Committees combine experts' opinions to make better decisions
- · Intuitions:
 - Individuals often make mistakes, but the "majority" is less likely to make mistakes.
 - Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.

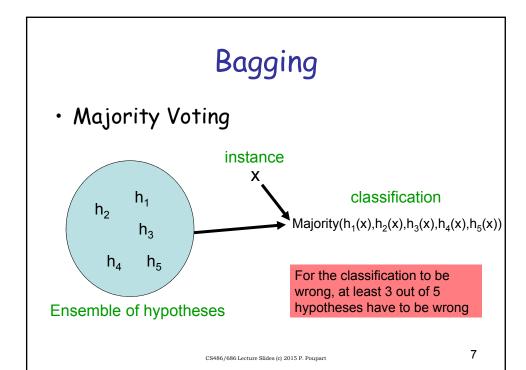
CS486/686 Lecture Slides (c) 2015 P. Poupart

5

Ensemble Learning

- · Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis
- Can enlarge hypothesis space
 - Perceptrons
 - · linear separators
 - Ensemble of perceptrons
 - polytope

CS486/686 Lecture Slides (c) 2015 P. Poupar



Bagging

- · Assumptions:
 - Each hi makes error with probability p
 - The hypotheses are independent
- · Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k}$ $p^k(1-p)^{n-k}$
 - Majority makes an error: $\Sigma_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With n=5, p=0.1 \rightarrow err(majority) < 0.01

CS486/686 Lecture Slides (c) 2015 P. Poupart

Weighted Majority

- · In practice
 - Hypotheses rarely independent
 - Some hypotheses have less errors than others
- · Let's take a weighted majority
- · Intuition:
 - Decrease weight of correlated hypotheses
 - Increase weight of good hypotheses

CS486/686 Lecture Slides (c) 2015 P. Poupart

9

Boosting

- · Very popular ensemble technique
- · Computes a weighted majority
- · Can "boost" a "weak learner"
- · Operates on a weighted training set

Weighted Training Set

- Learning with a weighted training set
 - Supervised learning → minimize train. error
 - Bias algorithm to learn correctly instances with high weights
- Idea: when an instance is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly

CS486/686 Lecture Slides (c) 2015 P. Poupart

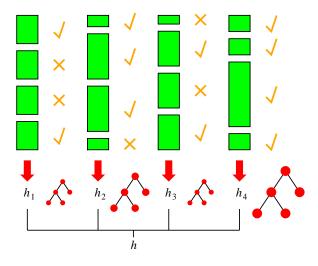
11

Boosting Framework

- Set all instance weights w_x to 1
- Repeat
 - $h_i \leftarrow learn(dataset, weights)$
 - Increase w_x of misclassified instances x
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h_i's with weights w_i proportional to the accuracy of h_i

CS486/686 Lecture Slides (c) 2015 P. Poupart

Boosting Framework



CS486/686 Lecture Slides (c) 2015 P. Poupart

13

w: vector of N instance weights

z: vector of M hypoth. weights

AdaBoost (Adaptive Boosting)

- $w_j \leftarrow 1/N \ \forall_j$
- For m=1 to M do
 - $h_m \leftarrow learn(dataset,w)$
 - err ← 0
 - For each (x_j,y_j) in dataset do
 - If $h_m(x_j) \neq y_j$ then err \leftarrow err + w_j
 - For each (x_i, y_i) in dataset do
 - If $h_m(x_j) = y_j$ then $w_j \leftarrow w_j$ err / (1-err)
 - w ← normalize(w)
 - $z_m \leftarrow \log [(1-err) / err]$
- Return weighted-majority(h,z)

CS486/686 Lecture Slides (c) 2015 P. Poupar

What can we boost?

- Weak learner: produces hypotheses at least as good as random classifier.
- · Examples:
 - Rules of thumb
 - Decision stumps (decision trees of one node)
 - Perceptrons
 - Naïve Bayes models

CS486/686 Lecture Slides (c) 2015 P. Poupart

15

Boosting Paradigm

- Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Boosting is very simple to program
 - Good generalization
- · Paradigm shift
 - Don't try to learn a perfect hypothesis
 - Just learn simple rules of thumbs and boost them

CS486/686 Lecture Slides (c) 2015 P. Poupart

Boosting Paradigm

- When we already have a bunch of hypotheses, boosting provides a principled approach to combine them
- Useful for
 - Sensor fusion
 - Combining experts

CS486/686 Lecture Slides (c) 2015 P. Poupart

17

Applications

- Any supervised learning task
 - Collaborative filtering (Netflix challenge)
 - Body part recognition (Kinect)
 - Spam filtering
 - Speech recognition/natural language processing
 - Data mining
 - Etc.

18

CS486/686 Lecture Slides (c) 2015 P. Poupart

Netflix Challenge

 Problem: predict movie ratings based on database of ratings by previous users

Launch: 2006

- Goal: improve Netflix predictions by 10%

- Grand Prize: 1 million \$

CS486/686 Lecture Slides (c) 2015 P. Poupart

19

Progress

- · 2007: BellKor 8.43% improvement
- 2008:
 - No individual algorithm improves by > 9.43%
 - Top two teams BellKor and BigChaos unite
 - Start of ensemble learning
 - Jointly improve by > 9.43%
- · June 26, 2009:
 - Top 3 teams BellKor, BigChaos and Pragmatic unite
 - Jointly improve > 10%
 - 30 days left for anyone to beat them

CS486/686 Lecture Slides (c) 2015 P. Poupart

The Ensemble

- · Formation of "Grand Prize Team":
 - Anyone could join
 - Share of \$1 million grand prize proportional to improvement in team score
 - Improvement: 9.46%
- · 5 days to the deadline
 - "The Ensemble" team is born
 - Union of Grand Prize team and Vanderlay Industries
 - · Ensemble of many researchers

CS486/686 Lecture Slides (c) 2015 P. Poupart

21

Finale

- · Last Day: July 26, 2009
- 6:18 pm:
 - BellKor's Pragmatic Chaos: 10.06% improv.
- 6:38 pm:
 - The Ensemble: 10.06% improvement
- · Tie breaker: time of submission

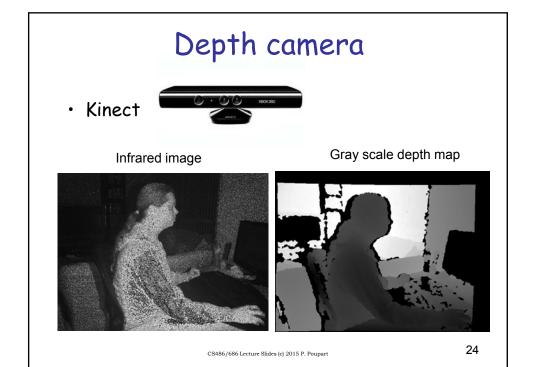
CS486/686 Lecture Slides (c) 2015 P. Poupart

Xbox 360 Kinect

- Microsoft Cambridge
- · Body part recognition: supervised learning

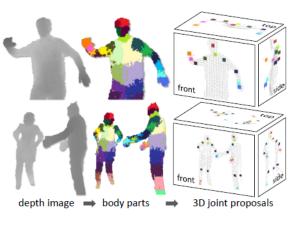
CS486/686 Lecture Slides (c) 2015 P. Poupart

23



Kinect Body Part Recognition

· Problem: label each pixel with a body part

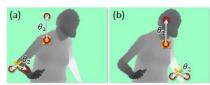


CS486/686 Lecture Slides (c) 2015 P. Poupart

25

Kinect Body Part Recognition

Features: depth differences between pairs of pixels



· Classification: forest of decision trees

