Statistical Learning [RN2 Sec 20.1-20.2] [RN3 Sec 20.1-20.2]

CS 486/686

University of Waterloo

Lecture 16: June 25, 2015

Outline

- · Statistical learning
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood
- Learning from complete Data

Statistical Learning

View: we have uncertain knowledge of the world

Idea: learning simply reduces this uncertainty

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime

- ...

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)

Bayesian Prediction

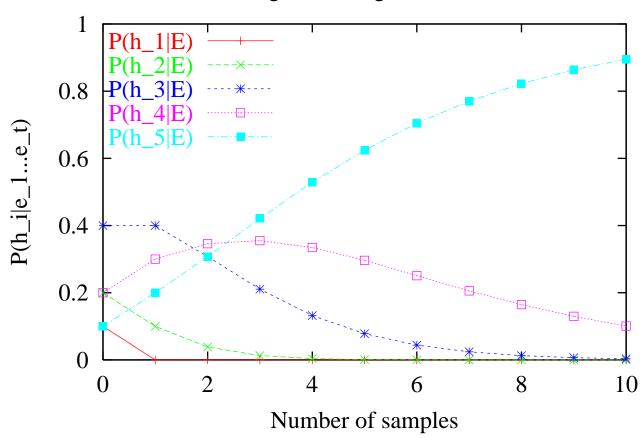
- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|d) = \Sigma_i Pr(X|d,h_i)P(h_i|d)$ = $\Sigma_i Pr(X|h_i)P(h_i|d)$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

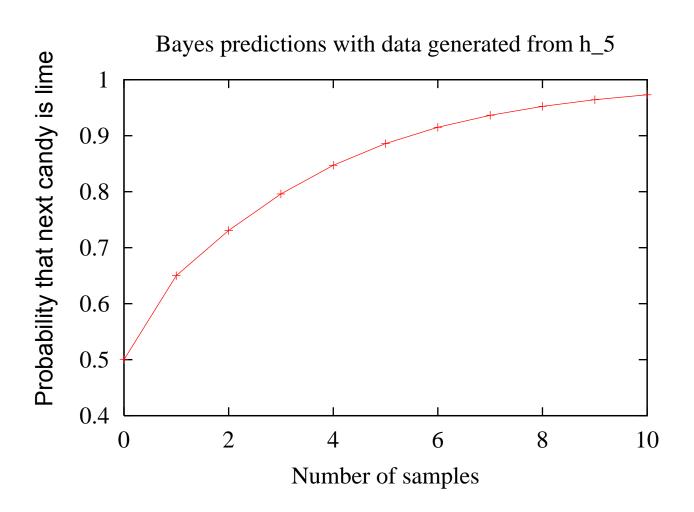
- Assume prior $P(H) = \langle 0.1, 0.2, 0.4, 0.2, 0.1 \rangle$
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(d_j|\mathbf{h})$
- Suppose first 10 candies all taste lime:
 - $P(d|h_5) = 1^{10} = 1$
 - $-P(\mathbf{d}|\mathbf{h}_3) = 0.5^{10} = 0.00097$
 - $P(d|h_1) = 0^{10} = 0$

Posterior

Posteriors given data generated from h_5



Prediction



Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

• Idea: make prediction based on most probable hypothesis h_{MAP}

```
- h_{MAP} = argmax_{h_i} P(h_i | d)
```

- $P(X|d) \approx P(X|h_{MAP})$
- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Candy Example (MAP)

Prediction after

```
- 1 lime: h_{MAP} = h_3, Pr(lime|h_{MAP}) = 0.5
```

- 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$

- 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- ...

After only 3 limes, it correctly selects h₅

Candy Example (MAP)

- But what if correct hypothesis is h₄?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

MAP computation

Optimization:

```
- h_{MAP} = argmax_h P(h|d)
= argmax_h P(h) P(d|h)
= argmax_h P(h) \Pi_i P(d_i|h)
```

- · Product induces non-linear optimization
- Take the log to linearize optimization
 - h_{MAP} = $argmax_h log P(h) + \Sigma_i log P(d_i|h)$

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j) \forall i,j$)
 - h_{MAP} = $argmax_h P(h) P(d|h)$
 - $h_{ML} = argmax_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|d) \approx P(X|h_{ML})$

Candy Example (ML)

Prediction after

```
- 1 lime: h_{ML} = h_5, Pr(lime|h_{ML}) = 1
- 2 limes: h_{ML} = h_5, Pr(lime|h_{ML}) = 1
```

- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior = uniform prior)

ML properties

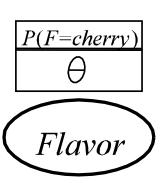
- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - $h_{ML} = argmax_h \Sigma_i log P(d_i|h)$

Statistical Learning

- · Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_{θ} :
 - P(cherry)= θ & P(lime)= $1-\theta$
- Data d:
 - c cherries and I limes



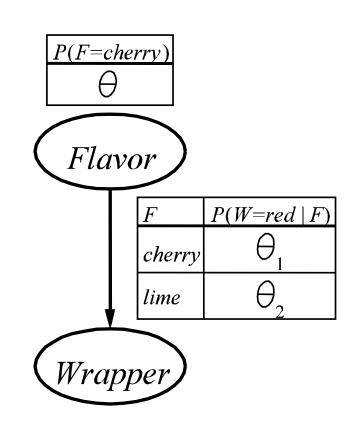
- ML hypothesis:
 - θ is relative frequency of observed data
 - $-\theta = c/(c+1)$
 - P(cherry) = c/(c+1) and P(lime) = 1/(c+1)

ML computation

- 1) Likelihood expression
 - $P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (1-\theta)^{l}$
- 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + 1 \log (1-\theta)$
- · 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|\mathbf{h}_{\theta}))/d\theta = c/\theta I/(1-\theta)$
- 4) ML hypothesis
 - $c/\theta 1/(1-\theta) = 0 \rightarrow \theta = c/(c+1)$

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- Data:
 - c cherries
 - g_c green wrappers
 - · r_c red wrappers
 - I limes
 - g_1 green wrappers
 - · r₁ red wrappers



ML computation

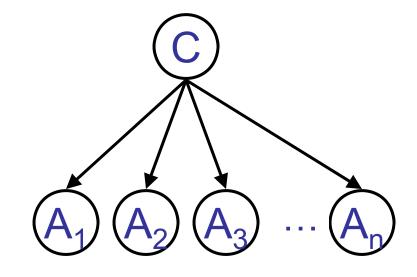
- 1) Likelihood expression
 - $P(d|h_{\theta_1,\theta_1,\theta_2}) = \theta^c(1-\theta)^{|\theta_1|^2} (1-\theta_1)^{|\theta_2|^2} (1-\theta_2)^{|\theta_1|^2}$
- •
- 4) ML hypothesis
 - $-c/\theta 1/(1-\theta) = 0 \rightarrow \theta = c/(c+1)$
 - $r_c/\theta_1 g_c/(1-\theta_1) = 0 \rightarrow \theta_1 = r_c/(r_c+g_c)$
 - $-r_{|}/\theta_{2}-g_{|}/(1-\theta_{2})=0 \Rightarrow \theta_{2}=r_{|}/(r_{|}+g_{|})$

Laplace Smoothing

- An important case of overfitting happens when there is no sample for a certain outcome
 - E.g. no cherries eaten so far
 - P(cherry) = θ = c/(c+l) = 0
 - Zero prob. are dangerous: they rule out outcomes
- · Solution: Laplace (add-one) smoothing
 - Add 1 to all counts
 - $P(cherry) = \theta = (c+1)/(c+l+2) > 0$
 - Much better results in practice

Naive Bayes model

- Want to predict a class C based on attributes A_i
- Parameters:
 - θ = P(C=true)
 - θ_{i1} = P(A_i =true|C=true)
 - θ_{i2} = P(A_i =true|C=false)



Assumption: A_i's are independent given C

Naïve Bayes model for Restaurant Problem

· Data:

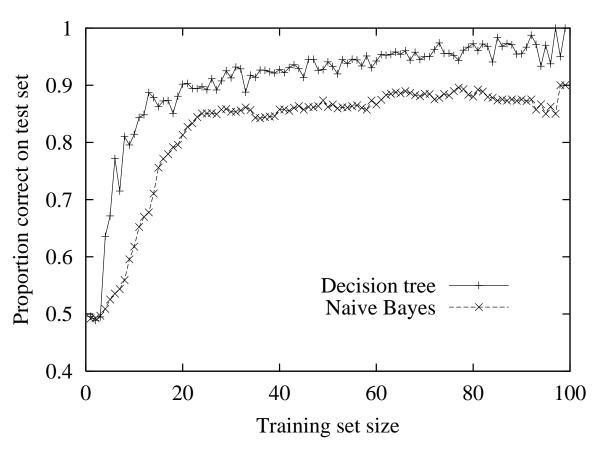
Example	Attributes										Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	T

ML sets

- θ to relative frequencies of wait and ~wait
- θ_{i1} , θ_{i2} to relative frequencies of each attribute value given wait and ~wait

Naive Bayes model vs decision trees

Wait prediction for restaurant problem



Why is naïve
Bayes less
accurate than
decision tree?

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data d:
 - $d_1 : \langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - $d_2 : \langle V_1 = V_{1,2}, V_2 = V_{2,2}, ..., V_n = V_{n,2} \rangle$
 - ...
- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values \mathbf{v} of the parents of V