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Outline

• Statistical learning
– Bayesian learning
– Maximum a posteriori
– Maximum likelihood

• Learning from complete Data
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Statistical Learning

• View: we have uncertain knowledge of the 
world

• Idea: learning simply reduces this uncertainty
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Candy Example
• Favorite candy sold in two flavors:

– Lime (hugh)
– Cherry (yum)

• Same wrapper for both flavors
• Sold in bags with different ratios:

– 100% cherry
– 75% cherry + 25% lime
– 50% cherry + 50% lime
– 25% cherry + 75% lime
– 100% lime



3

CS486/686 Lecture Slides (c) 2015 P. Poupart 5

Candy Example

• You bought a bag of candy but don’t know its 
flavor ratio

• After eating k candies:
– What’s the flavor ratio of the bag?
– What will be the flavor of the next candy?
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Statistical Learning
• Hypothesis H: probabilistic theory of the 

world
– h1: 100% cherry
– h2: 75% cherry + 25% lime
– h3: 50% cherry + 50% lime
– h4: 25% cherry + 75% lime
– h5: 100% lime

• Data D: evidence about the world
– d1: 1st candy is cherry
– d2: 2nd candy is lime
– d3: 3rd candy is lime
– …
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Bayesian Learning
• Prior: Pr(H)
• Likelihood: Pr(d|H)
• Evidence: d = <d1,d2,…,dn>

• Bayesian Learning amounts to computing the 
posterior using Bayes’ Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)
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Bayesian Prediction
• Suppose we want to make a prediction about 

an unknown quantity X (i.e., the flavor of the 
next candy)

• Pr(X|d) = Σi Pr(X|d,hi)P(hi|d)
= Σi Pr(X|hi)P(hi|d) 

• Predictions are weighted averages of the 
predictions of the individual hypotheses

• Hypotheses serve as “intermediaries” 
between raw data and prediction
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Candy Example
• Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
• Assume candies are i.i.d. (identically and 

independently distributed)
– P(d|h) = j P(dj|h)

• Suppose first 10 candies all taste lime:
– P(d|h5) = 110 = 1
– P(d|h3) = 0.510 = 0.00097
– P(d|h1) = 010 = 0
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Posterior
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Prediction
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Bayesian Learning
• Bayesian learning properties:

– Optimal (i.e. given prior, no other prediction is 
correct more often than the Bayesian one)

– No overfitting (all hypotheses weighted and 
considered)

• There is a price to pay:
– When hypothesis space is large Bayesian learning 

may be intractable
– i.e. sum (or integral) over hypothesis often 

intractable
• Solution: approximate Bayesian learning
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Maximum a posteriori (MAP)
• Idea: make prediction based on most probable 

hypothesis hMAP
– hMAP = argmaxhi

P(hi|d)
– P(X|d)  P(X|hMAP)

• In contrast, Bayesian learning makes 
prediction based on all hypotheses weighted 
by their probability
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Candy Example (MAP)
• Prediction after 

– 1 lime: hMAP = h3, Pr(lime|hMAP) = 0.5
– 2 limes: hMAP = h4, Pr(lime|hMAP) = 0.75
– 3 limes: hMAP = h5, Pr(lime|hMAP) = 1
– 4 limes: hMAP = h5, Pr(lime|hMAP) = 1
– …

• After only 3 limes, it correctly selects h5
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Candy Example (MAP)
• But what if correct hypothesis is h4?

– h4: P(lime) = 0.75 and P(cherry) = 0.25

• After 3 limes
– MAP incorrectly predicts h5

– MAP yields P(lime|hMAP) = 1
– Bayesian learning yields P(lime|d) = 0.8
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MAP properties
• MAP prediction less accurate than Bayesian 

prediction since it relies only on one
hypothesis hMAP

• But MAP and Bayesian predictions converge as 
data increases

• Controlled overfitting (prior can be used to 
penalize complex hypotheses)

• Finding hMAP may be intractable:
– hMAP = argmax P(h|d)
– Optimization may be difficult



9

CS486/686 Lecture Slides (c) 2015 P. Poupart 17

MAP computation
• Optimization:

– hMAP = argmaxh P(h|d)
= argmaxh P(h) P(d|h)
= argmaxh P(h) i P(di|h)

• Product induces non-linear optimization
• Take the log to linearize optimization

– hMAP = argmaxh log P(h) + Σi log P(di|h)
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Maximum Likelihood (ML)
• Idea: simplify MAP by assuming uniform prior 

(i.e., P(hi) = P(hj) i,j)
– hMAP = argmaxh P(h) P(d|h)
– hML = argmaxh P(d|h)

• Make prediction based on hML only:
– P(X|d)  P(X|hML)
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Candy Example (ML)
• Prediction after 

– 1 lime: hML = h5, Pr(lime|hML) = 1
– 2 limes: hML = h5, Pr(lime|hML) = 1
– …

• Frequentist: “objective” prediction since it 
relies only on the data (i.e., no prior)

• Bayesian: prediction based on data and uniform 
prior (since no prior  uniform prior)  
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ML properties
• ML prediction less accurate than Bayesian 

and MAP predictions since it ignores prior 
info and relies only on one hypothesis hML

• But ML, MAP and Bayesian predictions 
converge as data increases

• Subject to overfitting (no prior to penalize 
complex hypothesis that could exploit 
statistically insignificant data patterns)

• Finding hML is often easier than hMAP
– hML = argmaxh Σi log P(di|h)



11

CS486/686 Lecture Slides (c) 2015 P. Poupart 21

Statistical Learning
• Use Bayesian Learning, MAP or ML

• Complete data:
– When data has multiple attributes, all attributes 

are known
– Easy

• Incomplete data:
– When data has multiple attributes, some 

attributes are unknown
– Harder
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Simple ML example
• Hypothesis h:

– P(cherry)= & P(lime)=1-
• Data d: 

– c cherries and l limes 

• ML hypothesis:
–  is relative frequency of observed data
–  = c/(c+l)
– P(cherry) = c/(c+l)  and  P(lime)= l/(c+l)
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ML computation
• 1) Likelihood expression

– P(d|h) = c (1-)l

• 2) log likelihood
– log P(d|h) = c log  + l log (1-)

• 3) log likelihood derivative
– d(log P(d|h))/d = c/ - l/(1-)

• 4) ML hypothesis
– c/ - l/(1-) = 0   = c/(c+l)
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More complicated ML example
• Hypothesis: h,1,2

• Data:
– c cherries 

• gc green wrappers
• rc red wrappers

– l limes
• gl green wrappers
• rl red wrappers
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ML computation
• 1) Likelihood expression

– P(d|h,1,2
) = c(1-)l 1

rc(1-1)gc 2
rl(1-2)gl

• …
• 4) ML hypothesis

– c/ - l/(1-) = 0  = c/(c+l)
– rc/1 - gc/(1-1) = 0 1 = rc/(rc+gc)
– rl/2 - gl/(1-2) = 0 2 = rl/(rl+gl)
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Laplace Smoothing
• An important case of overfitting happens 

when there is no sample for a certain outcome
– E.g. no cherries eaten so far
– P(cherry) =  = c/(c+l) = 0
– Zero prob. are dangerous: they rule out outcomes

• Solution: Laplace (add-one) smoothing
– Add 1 to all counts
– P(cherry) =  = (c+1)/(c+l+2) > 0
– Much better results in practice
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Naïve Bayes model

C

AnA3A2A1
…

• Want to predict a 
class C based on 
attributes Ai

• Parameters: 
–  = P(C=true)
– i1 = P(Ai=true|C=true)
– i2 = P(Ai=true|C=false)

• Assumption: Ai’s are independent given C
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Naïve Bayes model for 
Restaurant Problem

• Data:

• ML sets 
–  to relative frequencies of wait and ~wait
– i1, i2 to relative frequencies of each attribute 

value given wait and ~wait
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Naïve Bayes model 
vs decision trees

• Wait prediction for restaurant problem
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decision tree?
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Bayesian network 
parameter learning (ML)

• Parameters V,pa(V)=v:
– CPTs: V,pa(V)=v = P(V|pa(V)=v)

• Data d: 
– d1 : <V1=v1,1, V2=v2,1, …, Vn = vn,1>
– d2 : <V1=v1,2, V2=v2,2, …, Vn = vn,2>
– …

• Maximum likelihood:
– Set V,pa(V)=v to the relative frequencies of the 

values of V given the values v of the parents of V


