Markov Decision Processes [RN2] Sec 17.1, 17.2, 17.4, 17.5 [RN3] Sec 17.1, 17.2, 17.4

> CS 486/686 University of Waterloo Lecture 13: June 16, 2015

Outline

- Markov Decision Processes
- Dynamic Decision Networks

Sequential Decision Making

- Wide range of applications
 - Robotics (e.g., control)
 - Investments (e.g., portfolio management)
 - Computational linguistics (e.g., dialogue management)
 - Operations research (e.g., inventory management, resource allocation, call admission control)
 - Assistive technologies (e.g., patient monitoring and support)

Markov Decision Process

- Intuition: Markov Process with...
 - Decision nodes
 - Utility nodes

CS486/686 Lecture Slides (c) 2015 P. Poupart

Stationary Preferences

- Hum... but why many utility nodes?
- U(s₀,s₁,s₂,...)
 - Infinite process \rightarrow infinite utility function
- Solution:
 - Assume stationary and additive preferences

-
$$U(s_0, s_1, s_2, ...) = \Sigma_{\dagger} R(s_{\dagger})$$

Discounted/Average Rewards

- If process infinite, isn't $\Sigma_{+} R(s_{+})$ infinite?
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma \le 1$
 - Finite utility: $\Sigma_{t} \gamma^{t} R(s_{t})$ is a geometric sum
 - γ is like an inflation rate of $1/\gamma$ 1
 - Intuition: prefer utility sooner than later
- Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

Markov Decision Process

- Definition
 - Set of states: <mark>S</mark>
 - Set of actions (i.e., decisions): A
 - Transition model: $Pr(s_{\dagger}|a_{\dagger-1},s_{\dagger-1})$
 - Reward model (i.e., utility): R(s_t)
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- Goal: find optimal policy

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales but increases storage costs

Policy

- Choice of action at each time step
- Formally:
 - Mapping from states to actions
 - i.e., $\delta(s_{\dagger}) = a_{\dagger}$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t . Why?

Policy Optimization

- Policy evaluation:
 - Compute expected utility
 - $EU(\delta) = \sum_{t=0}^{h} \gamma^{t} \Pr(s_{t}|\delta) R(s_{t})$
- Optimal policy:
 - Policy with highest expected utility
 - EU(δ) ≤ EU(δ^{*}) for all δ

Policy Optimization

- Three algorithms to optimize policy:
 - Value iteration
 - Policy iteration
 - Linear Programming
- Value iteration:
 - Equivalent to variable elimination

Value Iteration

- Nothing more than variable elimination
- Performs dynamic programming
- Optimize decisions in reverse order

CS486/686 Lecture Slides (c) 2015 P. Poupart

Value Iteration

- At each t, starting from t=h down to 0:
 - Optimize a_t : EU($a_t | s_t$)?
 - Factors: $Pr(s_{i+1}|a_i,s_i)$, $R(s_i)$, for $0 \le i \le h$
 - Restrict s_t

CS486/686 Lecture Slides (c) 2015 P. Poupart

Value Iteration

- Value when no time left:
 - $V(s_h) = R(s_h)$
- Value with one time step left:
 - $V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}) + \gamma \Sigma_{s_h} Pr(s_h|s_{h-1},a_{h-1}) V(s_h)$
- Value with two time steps left:
 - $V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}) + \gamma \Sigma_{s_{h-1}} Pr(s_{h-1}|s_{h-2},a_{h-2}) V(s_{h-1})$
- Bellman's equation:
 - $V(s_{\dagger}) = \max_{a_{\dagger}} R(s_{\dagger}) + \gamma \Sigma_{s_{\dagger+1}} Pr(s_{\dagger+1}|s_{\dagger},a_{\dagger}) V(s_{\dagger+1})$
 - $a_{t}^{*} = argmax_{a_{t}} R(s_{t}) + \gamma \Sigma_{s_{t+1}} Pr(s_{t+1}|s_{t},a_{t}) V(s_{t+1})$

A Markov Decision Process

CS486/686 Lecture Slides (c) 2015 P. Poupart

16

+	V(PU)	V(PF)	V(RU)	V(RF)
h	0	0	10	10
h-1	0	4.5	14.5	19
h-2	2.03	8.55	16.53	25.08
h-3	4.76	12.20	18.35	28.72
h-4	7.63	15.07	20.40	31.18
h-5	10.21	17.46	22.61	33.21

Finite Horizon

- When h is finite,
- Non-stationary optimal policy
- Best action different at each time step
- Intuition: best action varies with the amount of time left

Infinite Horizon

- When h is infinite,
- Stationary optimal policy
- Same best action at each time step
- Intuition: same (infinite) amount of time left at each time step, hence same best action
- Problem: value iteration does an infinite number of iterations...

Infinite Horizon

- Assuming a discount factor $\gamma,$ after k time steps, rewards are scaled down by γ^k
- For large enough k, rewards become insignificant since $\gamma^k \rightarrow 0$
- Solution:
 - pick large enough k
 - run value iteration for k steps
 - Execute policy found at the k^{th} iteration

Computational Complexity

- Space and time: O(k|A||S|²) ☺
 Here k is the number of iterations
- But what if |A| and |S| are defined by several random variables and consequently exponential?
- Solution: exploit conditional independence
 - Dynamic decision network

Dynamic Decision Network

CS486/686 Lecture Slides (c) 2015 P. Poupart

Dynamic Decision Network

- Similarly to dynamic Bayes nets:
 - Compact representation 🙂
 - Exponential time for decision making $\ensuremath{\mathfrak{S}}$

Partial Observability

- What if states are not fully observable?
- Solution: Partially Observable Markov Decision Process

CS486/686 Lecture Slides (c) 2015 P. Poupart

Partially Observable Markov Decision Process (POMDP)

- Definition
 - Set of states: S
 - Set of actions (i.e., decisions): A
 - Set of observations: O
 - Transition model: $Pr(s_{\dagger}|a_{\dagger-1},s_{\dagger-1})$
 - Observation model: $Pr(o_{+}|s_{+})$
 - Reward model (i.e., utility): R(s_t)
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- Policy: mapping from past obs. to actions

POMDP

- Problem: action choice generally depends on all previous observations...
- Two solutions:
 - Consider only policies that depend on a finite history of observations
 - Find stationary sufficient statistics encoding relevant past observations

Partially Observable DDN

Actions do not depend on all state variables

CS486/686 Lecture Slides (c) 2015 P. Poupart

Policy Optimization

- Policy optimization:
 - Value iteration (variable elimination)
 - Policy iteration
- POMDP and PODDN complexity:
 - Exponential in |O| and k when action choice depends on all previous observations 😕
 - In practice, good policies based on subset of past observations can still be found

COACH project

- Automated prompting system to help elderly persons wash their hands
- IATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger, Jesse Hoey, Geoff Fernie and Craig Boutilier

CS486/686 Lecture Slides (c) 2015 P. Poupart

Aging Population

- Dementia
 - Deterioration of intellectual faculties
 - Confusion

- Memory losses (e.g., Alzheimer's disease)
- Consequences:
 - Loss of autonomy
 - Continual and expensive care required

Intelligent Assistive Technology

- Let's facilitate aging in place
- Intelligent assistive technology
 - Non-obtrusive, yet pervasive
 - Adaptable
- Benefits:
 - Greater autonomy
 - Feeling of independence

System Overview

Prompting Strategy

- Sequential decision problem
 - Sequence of prompts
- Noisy sensors & imprecise actuators
 - Noisy image processing, uncertain prompt effects
- Partially unknown environment
 - Unknown user habits, preferences and abilities
- Tradeoff between complex concurrent goals
 - Rapid task completion vs greater autonomy
- Approach: Partially Observable Markov Decision Processes (POMDPs)

POMDP components

- State set S = dom(HL) x dom(WF) x dom(D) x ...
 - Hand Location \in {tap,water,soap,towel,sink,away,...}
 - Water Flow \in {on, off},
 - Dementia \in {high, low}, etc.
- Observation set O = dom(C) x dom(FS)
 - Camera \in {handsAtTap, handsAtTowel, ...}
 - Faucet sensor ∈ {waterOn, waterOff}
- Action set A
 - DoNothing, CallCaregiver, Prompt ∈ {turnOnWater, rinseHands, useSoap, …}

POMDP components

- Reward function R(s,a)
 - Task completed \rightarrow +100
 - Call caregiver \rightarrow -30
 - Each prompt \rightarrow -1, -2 or -3