
1

Markov Decision Processes
[RN2] Sec 17.1, 17.2, 17.4, 17.5

[RN3] Sec 17.1, 17.2, 17.4

CS 486/686
University of Waterloo

Lecture 13: June 16, 2015

CS486/686 Lecture Slides (c) 2015 P. Poupart

2

Outline

• Markov Decision Processes
• Dynamic Decision Networks

2

CS486/686 Lecture Slides (c) 2015 P. Poupart

3

Sequential Decision Making

Static Inference
Bayesian Networks

Sequential Inference
Hidden Markov Models

Dynamic Bayesian Networks

Static Decision Making
Decision Networks

Sequential Decision Making
Markov Decision Processes
Dynamic Decision Networks

CS486/686 Lecture Slides (c) 2015 P. Poupart

4

Sequential Decision Making
• Wide range of applications

– Robotics (e.g., control)
– Investments (e.g., portfolio management)
– Computational linguistics (e.g., dialogue

management)
– Operations research (e.g., inventory

management, resource allocation, call
admission control)

– Assistive technologies (e.g., patient
monitoring and support)

3

CS486/686 Lecture Slides (c) 2015 P. Poupart

5

• Intuition: Markov Process with…
– Decision nodes
– Utility nodes

Markov Decision Process

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4

CS486/686 Lecture Slides (c) 2015 P. Poupart

6

Stationary Preferences
• Hum… but why many utility nodes?

• U(s0,s1,s2,…)
– Infinite process  infinite utility function

• Solution:
– Assume stationary and additive preferences
– U(s0,s1,s2,…) = Σt R(st)

4

CS486/686 Lecture Slides (c) 2015 P. Poupart

7

Discounted/Average Rewards
• If process infinite, isn’t Σt R(st) infinite?

• Solution 1: discounted rewards
– Discount factor: 0 ≤  ≤ 1
– Finite utility: Σt tR(st) is a geometric sum
–  is like an inflation rate of 1/- 1
– Intuition: prefer utility sooner than later

• Solution 2: average rewards
– More complicated computationally
– Beyond the scope of this course

CS486/686 Lecture Slides (c) 2015 P. Poupart

8

Markov Decision Process
• Definition

– Set of states: S
– Set of actions (i.e., decisions): A
– Transition model: Pr(st|at-1,st-1)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤  ≤ 1
– Horizon (i.e., # of time steps): h

• Goal: find optimal policy

5

CS486/686 Lecture Slides (c) 2015 P. Poupart

9

Inventory Management
• Markov Decision Process

– States: inventory levels
– Actions: {doNothing, orderWidgets}
– Transition model: stochastic demand
– Reward model: Sales – Costs - Storage
– Discount factor: 0.999
– Horizon: ∞

• Tradeoff: increasing supplies decreases odds
of missed sales but increases storage costs

CS486/686 Lecture Slides (c) 2015 P. Poupart

10

Policy
• Choice of action at each time step

• Formally:
– Mapping from states to actions
– i.e., δ(st) = at

– Assumption: fully observable states
• Allows at to be chosen only based on current

state st. Why?

6

CS486/686 Lecture Slides (c) 2015 P. Poupart

11

Policy Optimization
• Policy evaluation:

– Compute expected utility
– EU(δ) = Σt=0 t Pr(st|δ) R(st)

• Optimal policy:
– Policy with highest expected utility
– EU(δ) ≤ EU(δ*) for all δ

h

CS486/686 Lecture Slides (c) 2015 P. Poupart

12

Policy Optimization
• Three algorithms to optimize policy:

– Value iteration
– Policy iteration
– Linear Programming

• Value iteration:
– Equivalent to variable elimination

7

CS486/686 Lecture Slides (c) 2015 P. Poupart

13

Value Iteration

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

• Nothing more than variable elimination
• Performs dynamic programming
• Optimize decisions in reverse order

CS486/686 Lecture Slides (c) 2015 P. Poupart

14

Value Iteration

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

• At each t, starting from t=h down to 0:
– Optimize at: EU(at|st)?
– Factors: Pr(si+1|ai,si), R(si), for 0≤i≤h
– Restrict st

– Eliminate st+1,…,sh,at+1,…,ah

8

CS486/686 Lecture Slides (c) 2015 P. Poupart

15

Value Iteration
• Value when no time left:

– V(sh) = R(sh)
• Value with one time step left:

– V(sh-1) = maxah-1
R(sh-1) +  Σsh

Pr(sh|sh-1,ah-1) V(sh)
• Value with two time steps left:

– V(sh-2) = maxah-2
R(sh-2) +  Σsh-1

Pr(sh-1|sh-2,ah-2) V(sh-1)
• …
• Bellman’s equation:

– V(st) = maxat
R(st) +  Σst+1

Pr(st+1|st,at) V(st+1)
– at* = argmaxat

R(st) +  Σst+1
Pr(st+1|st,at) V(st+1)

CS486/686 Lecture Slides (c) 2015 P. Poupart

16

A Markov Decision Process
1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½
½½

½

½

½

½

½
½

½

 = 0.9

You own a
company

In every state
you must
choose between
Saving money or
Advertising

9

CS486/686 Lecture Slides (c) 2015 P. Poupart

17

1

PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A

1

1

½
½½

½

½
½

½
½½

½
 = 0.9

t V(PU) V(PF) V(RU) V(RF)

h 0 0 10 10
h-1 0 4.5 14.5 19
h-2 2.03 8.55 16.53 25.08
h-3 4.76 12.20 18.35 28.72
h-4 7.63 15.07 20.40 31.18
h-5 10.21 17.46 22.61 33.21

CS486/686 Lecture Slides (c) 2015 P. Poupart

18

Finite Horizon

• When h is finite,
• Non-stationary optimal policy
• Best action different at each time step
• Intuition: best action varies with the amount

of time left

10

CS486/686 Lecture Slides (c) 2015 P. Poupart

19

Infinite Horizon

• When h is infinite,
• Stationary optimal policy
• Same best action at each time step
• Intuition: same (infinite) amount of time left

at each time step, hence same best action

• Problem: value iteration does an infinite
number of iterations…

CS486/686 Lecture Slides (c) 2015 P. Poupart

20

Infinite Horizon

• Assuming a discount factor , after k time
steps, rewards are scaled down by k

• For large enough k, rewards become
insignificant since k  0

• Solution:
– pick large enough k
– run value iteration for k steps
– Execute policy found at the kth iteration

11

CS486/686 Lecture Slides (c) 2015 P. Poupart

21

Computational Complexity
• Space and time: O(k|A||S|2) 

– Here k is the number of iterations

• But what if |A| and |S| are defined by
several random variables and
consequently exponential?

• Solution: exploit conditional
independence
– Dynamic decision network

CS486/686 Lecture Slides (c) 2015 P. Poupart

22

Dynamic Decision Network

Tt

Lt

Ct

Nt

Tt+1

Lt+1

Ct+1

Nt+1

Mt Mt+1

Actt

Tt-1

Lt-1

Ct-1

Nt-1

Mt-1

Actt-1

Tt-2

Lt-2

Ct-2

Nt-2

Mt-2

Actt-2

Rt+1
RtRt-1Rt-2

12

CS486/686 Lecture Slides (c) 2015 P. Poupart

23

Dynamic Decision Network

• Similarly to dynamic Bayes nets:
– Compact representation 
– Exponential time for decision making 

CS486/686 Lecture Slides (c) 2015 P. Poupart

24

Partial Observability
• What if states are not fully observable?
• Solution: Partially Observable Markov

Decision Process

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

o1oo o2 o3

13

CS486/686 Lecture Slides (c) 2015 P. Poupart

25

Partially Observable Markov
Decision Process (POMDP)

• Definition
– Set of states: S
– Set of actions (i.e., decisions): A
– Set of observations: O
– Transition model: Pr(st|at-1,st-1)
– Observation model: Pr(ot|st)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤  ≤ 1
– Horizon (i.e., # of time steps): h

• Policy: mapping from past obs. to actions

CS486/686 Lecture Slides (c) 2015 P. Poupart

26

POMDP

• Problem: action choice generally depends
on all previous observations…

• Two solutions:
– Consider only policies that depend on a

finite history of observations
– Find stationary sufficient statistics

encoding relevant past observations

14

CS486/686 Lecture Slides (c) 2015 P. Poupart

27

Partially Observable DDN

Tt

Lt

Ct

Nt

Tt+1

Lt+1

Ct+1

Nt+1

Mt Mt+1

Actt

Tt-1

Lt-1

Ct-1

Nt-1

Mt-1

Actt-1

Tt-2

Lt-2

Ct-2

Nt-2

Mt-2

Actt-2

Rt+1
RtRt-1Rt-2

• Actions do not depend on all state variables

CS486/686 Lecture Slides (c) 2015 P. Poupart

28

Policy Optimization
• Policy optimization:

– Value iteration (variable elimination)
– Policy iteration

• POMDP and PODDN complexity:
– Exponential in |O| and k when action choice

depends on all previous observations 
– In practice, good policies based on subset

of past observations can still be found

15

CS486/686 Lecture Slides (c) 2015 P. Poupart

29

COACH project

• Automated prompting system to help elderly persons
wash their hands

• IATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger,
Jesse Hoey, Geoff Fernie and Craig Boutilier

CS486/686 Lecture Slides (c) 2015 P. Poupart

30

Aging Population

• Dementia
– Deterioration of intellectual faculties

– Confusion

– Memory losses (e.g., Alzheimer’s disease)

• Consequences:
– Loss of autonomy

– Continual and expensive care required

16

CS486/686 Lecture Slides (c) 2015 P. Poupart

31

Intelligent Assistive Technology

• Let’s facilitate aging in place

• Intelligent assistive technology
– Non-obtrusive, yet pervasive

– Adaptable

• Benefits:
– Greater autonomy

– Feeling of independence

CS486/686 Lecture Slides (c) 2015 P. Poupart

32

System Overview

sensors

hand
washing

verbal
cues

planning

17

CS486/686 Lecture Slides (c) 2015 P. Poupart

33

Prompting Strategy

• Sequential decision problem
– Sequence of prompts

• Noisy sensors & imprecise actuators
– Noisy image processing, uncertain prompt effects

• Partially unknown environment
– Unknown user habits, preferences and abilities

• Tradeoff between complex concurrent goals
– Rapid task completion vs greater autonomy

• Approach: Partially Observable Markov Decision
Processes (POMDPs)

CS486/686 Lecture Slides (c) 2015 P. Poupart

34

POMDP components

• State set S = dom(HL) x dom(WF) x dom(D) x …
– Hand Location  {tap,water,soap,towel,sink,away,…}

– Water Flow  {on, off},

– Dementia  {high, low}, etc.

• Observation set O = dom(C) x dom(FS)
– Camera  {handsAtTap, handsAtTowel, …}

– Faucet sensor  {waterOn, waterOff}

• Action set A
– DoNothing, CallCaregiver, Prompt  {turnOnWater,

rinseHands, useSoap, …}

18

CS486/686 Lecture Slides (c) 2015 P. Poupart

35

POMDP components

• Transition function
Pr(s’|s,a)

• Reward function R(s,a)
– Task completed  +100

– Call caregiver  -30

– Each prompt  -1, -2 or -3

sink,off

sink,off sink,off

tap,on tap,on

soap,off soap,off

0.3
0.6

0.01

0.95

0.01

0.01

Observation function
Pr(o|s)

