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Outline

• Markov Decision Processes
• Dynamic Decision Networks
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Sequential Decision Making

Static Inference
Bayesian Networks

Sequential Inference
Hidden Markov Models

Dynamic Bayesian Networks

Static Decision Making
Decision Networks

Sequential Decision Making
Markov Decision Processes
Dynamic Decision Networks
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Sequential Decision Making
• Wide range of applications

– Robotics (e.g., control)
– Investments (e.g., portfolio management)
– Computational linguistics (e.g., dialogue 

management)
– Operations research (e.g., inventory 

management, resource allocation, call 
admission control)

– Assistive technologies (e.g., patient 
monitoring and support)
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• Intuition: Markov Process with…
– Decision nodes
– Utility nodes

Markov Decision Process

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4
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Stationary Preferences
• Hum… but why many utility nodes?

• U(s0,s1,s2,…)
– Infinite process  infinite utility function

• Solution: 
– Assume stationary and additive preferences
– U(s0,s1,s2,…) = Σt R(st)
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Discounted/Average Rewards
• If process infinite, isn’t Σt R(st) infinite?

• Solution 1: discounted rewards
– Discount factor: 0 ≤  ≤ 1
– Finite utility: Σt tR(st) is a geometric sum 
–  is like an inflation rate of 1/- 1
– Intuition: prefer utility sooner than later

• Solution 2: average rewards
– More complicated computationally
– Beyond the scope of this course
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Markov Decision Process
• Definition

– Set of states: S
– Set of actions (i.e., decisions): A
– Transition model: Pr(st|at-1,st-1)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤  ≤ 1
– Horizon (i.e., # of time steps): h

• Goal: find optimal policy
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Inventory Management
• Markov Decision Process

– States: inventory levels
– Actions: {doNothing, orderWidgets}
– Transition model: stochastic demand
– Reward model: Sales – Costs - Storage
– Discount factor: 0.999
– Horizon: ∞

• Tradeoff: increasing supplies decreases odds 
of missed sales but increases storage costs
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Policy
• Choice of action at each time step

• Formally:
– Mapping from states to actions
– i.e., δ(st) = at

– Assumption: fully observable states
• Allows at to be chosen only based on current 

state st. Why?
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Policy Optimization
• Policy evaluation:

– Compute expected utility
– EU(δ) = Σt=0 t Pr(st|δ) R(st)

• Optimal policy:
– Policy with highest expected utility
– EU(δ) ≤ EU(δ*) for all δ

h
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Policy Optimization
• Three algorithms to optimize policy:

– Value iteration
– Policy iteration
– Linear Programming

• Value iteration:
– Equivalent to variable elimination
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Value  Iteration

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

• Nothing more than variable elimination 
• Performs dynamic programming
• Optimize decisions in reverse order
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Value  Iteration

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

• At each t, starting from t=h down to 0:
– Optimize at: EU(at|st)?
– Factors: Pr(si+1|ai,si), R(si), for 0≤i≤h
– Restrict st

– Eliminate st+1,…,sh,at+1,…,ah
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Value  Iteration
• Value when no time left:

– V(sh) = R(sh)
• Value with one time step left:

– V(sh-1) = maxah-1
R(sh-1) +  Σsh

Pr(sh|sh-1,ah-1) V(sh)
• Value with two time steps left:

– V(sh-2) = maxah-2
R(sh-2) +  Σsh-1

Pr(sh-1|sh-2,ah-2) V(sh-1)
• …
• Bellman’s equation:

– V(st) = maxat
R(st) +  Σst+1

Pr(st+1|st,at) V(st+1)
– at* = argmaxat

R(st) +  Σst+1
Pr(st+1|st,at) V(st+1)
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A Markov Decision Process
1
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1

PU
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 = 0.9

t V(PU) V(PF) V(RU) V(RF)

h 0 0 10 10
h-1 0 4.5 14.5 19
h-2 2.03 8.55 16.53 25.08
h-3 4.76 12.20 18.35 28.72
h-4 7.63 15.07 20.40 31.18
h-5 10.21 17.46 22.61 33.21
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Finite Horizon

• When h is finite,
• Non-stationary optimal policy
• Best action different at each time step
• Intuition: best action varies with the amount 

of time left
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Infinite Horizon

• When h is infinite,
• Stationary optimal policy
• Same best action at each time step
• Intuition: same (infinite) amount of time left 

at each time step, hence same best action

• Problem: value iteration does an infinite 
number of iterations…
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Infinite Horizon

• Assuming a discount factor , after k time 
steps, rewards are scaled down by k

• For large enough k, rewards become 
insignificant since k  0

• Solution: 
– pick large enough k 
– run value iteration for k steps
– Execute policy found at the kth iteration
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Computational Complexity
• Space and time: O(k|A||S|2) 

– Here k is the number of iterations

• But what if |A| and |S| are defined by 
several random variables and 
consequently exponential?

• Solution: exploit conditional 
independence
– Dynamic decision network
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Dynamic Decision Network
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Dynamic Decision Network

• Similarly to dynamic Bayes nets:
– Compact representation 
– Exponential time for decision making 
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Partial Observability
• What if states are not fully observable?
• Solution: Partially Observable Markov 

Decision Process

s0 s1 s2 s3 s4

a0 a1 a2
a3

r1 r2 r3 r4

o1oo o2 o3
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Partially Observable Markov 
Decision Process (POMDP)

• Definition
– Set of states: S
– Set of actions (i.e., decisions): A
– Set of observations: O
– Transition model: Pr(st|at-1,st-1)
– Observation model: Pr(ot|st)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤  ≤ 1
– Horizon (i.e., # of time steps): h

• Policy: mapping from past obs. to actions
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POMDP

• Problem: action choice generally depends 
on all previous observations…

• Two solutions:
– Consider only policies that depend on a 

finite history of observations
– Find stationary sufficient statistics

encoding relevant past observations
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Partially Observable DDN
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• Actions do not depend on all state variables
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Policy Optimization
• Policy optimization:

– Value iteration (variable elimination)
– Policy iteration

• POMDP and PODDN complexity:
– Exponential in |O| and k when action choice 

depends on all previous observations 
– In practice, good policies based on subset 

of past observations can still be found
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COACH project

• Automated prompting system to help elderly persons 
wash their hands

• IATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger, 
Jesse Hoey, Geoff Fernie and Craig Boutilier
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Aging Population

• Dementia
– Deterioration of intellectual faculties

– Confusion

– Memory losses (e.g., Alzheimer’s disease)

• Consequences: 
– Loss of autonomy

– Continual and expensive care required
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Intelligent Assistive Technology

• Let’s facilitate aging in place

• Intelligent assistive technology
– Non-obtrusive, yet pervasive

– Adaptable

• Benefits: 
– Greater autonomy

– Feeling of independence
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System Overview

sensors

hand
washing

verbal 
cues

planning
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Prompting Strategy

• Sequential decision problem
– Sequence of prompts

• Noisy sensors & imprecise actuators
– Noisy image processing, uncertain prompt effects 

• Partially unknown environment
– Unknown user habits, preferences and abilities

• Tradeoff between complex concurrent goals
– Rapid task completion vs greater autonomy

• Approach: Partially Observable Markov Decision 
Processes (POMDPs)
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POMDP components

• State set S = dom(HL) x dom(WF) x dom(D) x …
– Hand Location  {tap,water,soap,towel,sink,away,…}

– Water Flow  {on, off}, 

– Dementia  {high, low}, etc.

• Observation set O = dom(C) x dom(FS)
– Camera  {handsAtTap, handsAtTowel, …}

– Faucet sensor  {waterOn, waterOff}

• Action set A
– DoNothing, CallCaregiver, Prompt  {turnOnWater, 

rinseHands, useSoap, …}
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POMDP components

• Transition function 
Pr(s’|s,a)

• Reward function R(s,a)
– Task completed  +100

– Call caregiver  -30

– Each prompt  -1, -2 or -3

sink,off

sink,off sink,off

tap,on tap,on

soap,off soap,off

0.3
0.6

0.01

0.95

0.01

0.01

Observation function 
Pr(o|s)


