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Outline

* Reasoning under uncertainty over fime
» Hidden Markov Models
» Dynamic Bayesian Networks



Static Inference

+ So far...
- Assume the world doesn't change
- Static probability distribution

- Ex: when repairing a car, whatever is
broken remains broken during the diagnosis

- But the world evolves over time...

- How can we use probabilistic inference for
weather predictions, stock market
predictions, patient monitoring, etc?



Dynamic Inference

* Need to reason over time
- Allow the world to evolve
- Set of states (encoding all possible worlds)
- Set of time-slices (snapshots of the world)

- Different probability distribution over
states at each time slice

- Dynamics encoding how distributions change
over tfime



Stochastic Process

- Definition
- Set of States: S
- Stochastic dynamics: Pr(s;|s; 4, ..., Sp)

>

- Can be viewed as a Bayes net with one
random variable per time slice
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Stochastic Process

* Problems:

- Infinitely many variables

- Infinitely large conditional probability
tables

» Solutions:

- Stationary process: dynamics do not change
over time

- Markov assumption: current state depends
only on a finite history of past states



K-order Markov Process

» Assumption: last k states sufficient

- First-order Markov Process
- Pr(s;|s;.1, ..., Sg) = Pr(s;|s;.)

- Second-order Markov Process
- Pr(s:|s;.1, ..., So) = Pr(s:|s;.1, S+.5)

>
So @ g @ g @
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K-order Markov Process

» Advantage:

- Can specify entire process with finitely
many time slices

- Two slices sufficient for a first-order

Markov process...

- Graph: @ ’@

- Dynamics: Pr(s;|s; )

- Prior: Pr(so)




Mobile Robot Localisation

+ Example of a first-order Markov
process

* Problem: uncertainty grows over time...
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Hidden Markov Models

- Robot could use sensors to reduce
location uncertainty...

» In general:

- States not directly observable, hence
uncertainty captured by a distribution

- Uncertain dynamics increase state
uncertainty

- Observations made via sensors reduce state
uncertainty

- Solution: Hidden Markov Model
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First-order Hidden Markov Model

- Definition:
- Set of states: S
- Set of observations: O
- Transition model: Pr(s,|s; ;)
- Observation model: Pr(o,|s;)
- Prior: Pr(sy)

) @ @
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Mobile Robot Localisation
- (First-order) Hidden Markov Model:

- S: (x,y) coordinates of the robot on a map

- O: distances to surrounding obstacles
(measured by laser range finders or sonars)

- Pr(s,|s;.;): movement of the robot with
uncertainty

- Pr(o;|s;): uncertainty in the measurements
provided by laser range finders and sonars
» Localisation corresponds to the query:
Pr(s,|o;, ..., 00)?
12
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Inference in temporal models

* Four common tasks:

- Monitoring: Pr(s;|o;, ..., 0¢)

- Prediction: Pr(s,,|o;, ..., 0¢)

- Hindsight: Pr(s,|o;, ..., 0;) where k < t
- Most likely explanation:

1°°°

* What algorithms should we use?

- First 3 tasks can be done with variable
elimination and 4 task with a variant of
variable elimination
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Monitoring

» Pr(s,|o;, ..., 01): distribution over current
state given observations

+ Examples: robot localisation, patient
monitoring

* Forward algorithm: corresponds to
variable elimination
- Factors: Pr(sy), Pr(s:|s; ). Pr(o:|s)), lcict
- Restrict o4, ..., 0, to the observations made
- Summout sg, ..., S+
- Z40_st-1 Pr(So) My Pr(silsi.1) Pr(o;ls;)
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Prediction

* Pr(s;.loy, ..., 01): distribution over future
state given observations

+ Examples: weather prediction, stock
market prediction

* Forward algorithm: corresponds to variable
elimination
- Factors: Pr(sy), Pr(s;|s; 1), Pr(o;|s)), lict+k
- Restrict o4, ..., 0, to the observations made
- Summout Sy, ..., St.k-1, Ot+1s -s Otuk

= 240 stek-1ot+1.ot+k Pr(S0) Hygeex P r(silsi) P r'(°i|51a,2
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Hindsight

+ Pr(s,|o;, ..., 0;) for k<t: distribution over
a past state given observations

» Example: crime scene investigation

* Forward-backward algorithm:
corresponds to variable elimination

- Factors: Pr(sy), Pr(s:|s; ). Pr(o:|s;), lcict

- Restrict o4, ..., 0, to the observations made
- Summout sy, ..., Sk.1, Ske1s s St

- st...sk-l,sk+1,...,s‘r PP(SO) Hlsis‘r Pr(silsi-l) PP(O;lSi)
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Most likely explanation

+ Argmax., < Pr(so,....s:|0;, .., 01): most
likely state sequence given observations
» Example: speech recognition

» Viterbi algorithm: corresponds to a
variant of variable elimination

- Factors: Pr(sy), Pr(s:|s;1). Pr(o:|s)), lict

- Restrict o4, ..., 0, to the observations made
- Maxout s, ..., S;

- MaXyo st PP(SO) Hlsis’r Pr(silsi-l) Pr(oilsi)
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Complexity of temporal inference

+ Hidden Markov Models are Bayes nets
with a polytree structure

- Hence, variable elimination is
- Linear w.r.t. fo # of time slices

- Linear w.r.t. to largest conditional
probability table (Pr(s;|s;.;) or Pr(o;|s;))

- What if # of states or observations are
exponential?
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Dynamic Bayesian Networks

- Tdea: encode states and observations
with several random variables

» Advantage: exploit conditional
independence to save time and space

* HMMs are just DBNs with one state
variable and one observation variable
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Mobile Robot Localisation

+ States: (x,y) coordinates and heading 6
- Observations: laser and sonar




DBN complexity

» Conditional independence allows us to
write transition and observation models
very compactly!

» Time and space of inference: conditional
independence rarely helps...

- inference tends to be exponential in the
number of state variables

- Intuition: all state variables eventually get
correlated

- No better than with HMMs ®
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Non-Stationary Process

* What if the process is not stationary?

» Solution: add new state components

until dynamics are stationary

+ Example:

- Robot navigation based on (x,y B) is hon-
stationary when velocity varies...

- Solution: add velocity to state description
e.g. (x,y,v.0)

- If velocity varies... then add acceleration

- Where do we stop?
22
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Non-Markovian Process

* What if the process is hot Markovian?

» Solution: add new state components
until dynamics are Markovian

+ Example:

- Robot navigation based on (x,y B) is hon-

Markovian when influenced by battery
level...

- Solution: add battery level to state
description e.g. (x,y,6,b)
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Markovian Stationary Process

* Problem: adding components to the
state description to force a process to
be Markovian and stationary may
significantly increase computational
complexity

+ Solution: try to find the smallest state
description that is self-sufficient (i.e.,
Markovian and stationary)
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Probabilistic Inference

+ Applications of static and temporal
inference are virtually limitless

+ Some examples:
- mobile robot navigation
- speech recognition
- patient monitoring
- help system under Windows
- fault diagnosis in Mars rovers
- efc.
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Robot localisation

e o "%Q}Y
s 7 :

« University of Washington robotics and State Estimation
« http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/
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Neato Robotics

 Robotic Vacuum Cleaners by Neato Robotics

* Use particle filtering
(approximate inference
technique based on
sampling) for simultaneous
localisation and mapping

* See patent:

http://www.fags.org/patents/assignee/neato-
robotics-inc/
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