Bayes Nets (cont)

CS 486/686 University of Waterloo May 30, 2006

Outline

- · Inference in Bayes Nets
- Variable Elimination

S486/686 Lecture Slides (c) 2006 C. Boutilier, P. Prumart & K. Laran

2

Inference in Bayes Nets

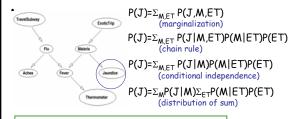
- The independence sanctioned by Dseparation (and other methods) allows us to compute prior and posterior probabilities quite effectively.
- We'll look at a couple simple examples to illustrate. We'll focus on networks without loops. (A loop is a cycle in the underlying undirected graph. Recall the directed graph has no cycles.)

S486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

3

Simple Forward Inference (Chain)

 Computing marginal requires simple forward "propagation" of probabilities

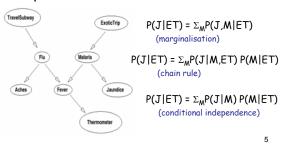


Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

Simple Forward Inference (Chain)

 Same idea applies when we have "upstream" evidence



Simple Forward Inference (Pooling)

- Same idea applies with multiple parents $P(Fev) = \Sigma_{Flu,M,TS,ET} P(Fev,Flu,M,TS,ET)$
 - $$\begin{split} &= \Sigma_{\text{Flu},M,\text{TS},\text{ET}} \, P(\text{Fev}|\text{Flu},M,\text{TS},\text{ET}) \, P(\text{Flu}|M,\text{TS},\text{ET}) \\ &\quad P(M|\text{TS},\text{ET}) \, P(\text{TS}|\text{ET}) \, P(\text{ET}) \end{split}$$
 - = $\Sigma_{Flu,M,TS,ET}$ P(Fev|Flu,M) P(Flu|TS) P(M|ET) P(TS) P(ET)
 - = $\Sigma_{Flu,M}$ P(Fev|Flu,M) [Σ_{TS} P(Flu|TS) P(TS)] [Σ_{ET} P(M|ET) P(ET)]
- (1) by marginalisation; (2) by the chain rule;
 (3) by conditional independence; (4) by distribution
 note: all terms are CPTs in the Bayes net

CS486/686 Lecture Slides (c) 2006 C. Routilier. P. Pourout & K. Laraon.

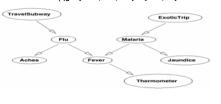
6

Simple Forward Inference (Pooling)

Same idea applies with evidence

 $P(Fev|ts,\sim m) = \sum_{Flu} P(Fev,Flu|ts,\sim m)$

- = Σ_{Flu} P(Fev |Flu,ts,~m) P(Flu|ts,~m)
- = $\Sigma_{Flu} P(Fev|Flu,\sim m) P(Flu|ts)$



Simple Backward Inference

· When evidence is downstream of guery variable, we must reason "backwards." This requires the use of Bayes rule:

 $P(ET \mid j) = \alpha P(j \mid ET) P(ET)$

- = $\alpha \Sigma_M P(j,M|ET) P(ET)$
- = $\alpha \Sigma_M P(j|M,ET) P(M|ET) P(ET)$
- = $\alpha \Sigma_M P(j|M) P(M|ET) P(ET)$
- · First step is just Bayes rule
 - normalizing constant α is 1/P(j); but we needn't compute it explicitly if we compute P(ET | j) for each value of ET: we just add up terms $P(j \mid ET) P(ET)$ for all values of ET (they sum to P(j))

Backward Inference (Pooling)

· Same ideas when several pieces of evidence lie "downstream"

 $P(ET|j,fev) = \alpha P(j,fev|ET) P(ET)$

- = $\alpha \Sigma_{M,FI,TS} P(j,fev,M,FI,TS|ET) P(ET)$
- = $\alpha \Sigma_{M,Fl,TS} P(j|fev,M,Fl,TS,ET) P(fev|M,Fl,TS,ET)$ P(M|FI,TS,ET) P(FI|TS,ET) P(TS|ET) P(ET)
- = $\alpha P(ET) \Sigma_M P(j|M) \Sigma_{FI} P(fev|M,FI) \Sigma_{TS} P(FI|TS) P(TS)$
- Same steps as before; but now we compute prob of both pieces of evidence given hypothesis ET and combine them. Note: they are independent given M; but not given ET.

Variable Elimination

- The intuitions in the above examples give us a simple inference algorithm for networks without loops: the *polytree* algorithm.
- Instead we'll look at a more general algorithm that works for general BNs; but the polytree algorithm will be a special
- The algorithm, *variable elimination*, simply applies the summing out rule repeatedly.
 - To keep computation simple, it exploits the independence in the network and the ability to distribute sums inward

Factors

- A function $f(X_1, X_2, ..., X_k)$ is also called a factor. We can view this as a table of numbers, one for each instantiation of the variables $X_1, X_2, ..., X_k$
 - A tabular rep'n of a factor is exponential in k
- Each CPT in a Bayes net is a factor:
 - e.g., Pr(C|A,B) is a function of three variables, A, B, C
- Notation: f(X,Y) denotes a factor over the variables X U Y. (Here X, Y are sets of variables.)

The Product of Two Factors

- Let f(X,Y) & g(Y,Z) be two factors with variables Y in common
- The *product* of f and g, denoted $h = f \times g$ (or sometimes just h = fg), is defined:

 $h(X,Y,Z) = f(X,Y) \times q(Y,Z)$

ab 0.9	bc	0.7	abc	0.63	ab~c	0.27
a~h 0.1						0.27
u b 0.1	b~c	0.3	a~bc	0.08	a~b~c	0.02
~ab 0.4	~bc	0.8	~abc	0.28	~ab~c	0.12
~a~b 0.6	~b~c	0.2	~a~bc	0.48	~a~b~c	0.12

Summing a Variable Out of a Factor

- Let f(X,Y) be a factor with variable X (Y is a set)
- We sum out variable X from f to produce a new factor $h = \Sigma_X f$, which is defined:

$$h(Y) = \sum_{x \in Dom(X)} f(x,Y)$$

f(A	,B)	h(B)			
αb	0.9	Ь	1.3		
a~b	0.1	~b	0.7		
~ab	0.4				
~a~b	0.6				

KI ---- O'N ---- O'N ---- O'N ----

13

Restricting a Factor

- Let f(X,Y) be a factor with variable X (Y is a set)
- We restrict factor f to X=x by setting X to the value x and "deleting". Define h = $f_{X=x}$ as: h(Y) = f(x,Y)

f(A	,B)	$h(B) = f_{A=a}$			
αb	0.9	b	0.9		
a~b	0.1	~b	0.1		
~ab	0.4				
~a~b	0.6				

14

Variable Elimination: No Evidence

 Computing prior probability of query var X can be seen as applying these operations on factors

 $\begin{array}{c}
A \\
\downarrow \\
f_1(A)
\end{array}$ $\begin{array}{c}
B \\
\downarrow \\
f_2(A,B)
\end{array}$ $\begin{array}{c}
C \\
f_3(B,C)
\end{array}$

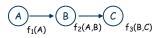
- $P(C) = \sum_{A,B} P(C|B) P(B|A) P(A)$
 - = $\Sigma_B P(C|B) \Sigma_A P(B|A) P(A)$
 - = $\Sigma_B f_3(B,C) \Sigma_A f_2(A,B) f_1(A)$
 - $= \Sigma_B f_3(B,C) f_4(B) = f_5(C)$

Define new factors: $f_4(B)$ = Σ_A $f_2(A,B)$ $f_1(A)$ and $f_5(C)$ = Σ_B $f_3(B,C)$ $f_4(B)$

28486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larso

Variable Elimination: No Evidence

· Here's the example with some numbers

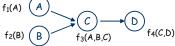


f ₁ ($f_1(A)$ $f_2(A,$,B)	f ₃ (B,C)		f ₄ (B)		f ₅ (C)	
α	0.9	αb	0.9	bc	0.7	Ь	0.85	С	0.625
~a	0.1	a~b	0.1	b~c	0.3	~b	0.15	~c	0.375
		~ab	0.4	~bc	0.2				
		~a~b	0.6	~b~c	0.8				

S486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

16

VE: No Evidence (Example 2)



 $P(D) = \sum_{A,B,C} P(D|C) P(C|B,A) P(B) P(A)$

- = $\Sigma_C P(D|C) \Sigma_B P(B) \Sigma_A P(C|B,A) P(A)$
- = $\Sigma_C f_4(C,D) \Sigma_B f_2(B) \Sigma_A f_3(A,B,C) f_1(A)$
- = $\Sigma_C f_4(C,D) \Sigma_B f_2(B) f_5(B,C)$
- = $\Sigma_C f_4(C,D) f_6(C)$
- $= f_7(D)$

Define new factors: $f_5(B,C)$, $f_6(C)$, $f_7(D)$, in the obvious way

CS486/686 Lecture Slides (cl. 2006 C. Routilier, P. Pournart & K. Larse

Variable Elimination: One View

- · One way to think of variable elimination:
 - write out desired computation using the chain rule, exploiting the independence relations in the network
 - arrange the terms in a convenient fashion
 - distribute each sum (over each variable) in as far as it will go
 - · i.e., the sum over variable X can be "pushed in" as far as the "first" factor mentioning X
 - apply operations "inside out", repeatedly eliminating and creating new factors (note that each step/removal of a sum eliminates one variable)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

18

Variable Elimination Algorithm

- · Given query var Q, remaining vars Z. Let F be the set of factors corresponding to CPTs for {Q} U Z.
- 1. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**. 2. For each Z_i -- in the order given -- eliminate $Z_i \in \boldsymbol{Z}$ as follows:
 - (a) Compute new factor $g_i = \sum_{Z_i} f_1 \times f_2 \times ... \times f_k$, where the f_i are the factors in F that include Z_i
 - (b) Remove the factors f_i (that mention Z_i) from Fand add new factor $\,g_j\,$ to $\,F\,$
- 3. The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

VE: Example 2 again

Factors: f₁(A) f₂(B) f₃(A,B,C) f₄(C,D) Query: P(D)? Elim. Order: A, B, C

Step 1: Add $f_5(B,C) = \sum_A f_3(A,B,C) f_1(A)$

Remove: $f_1(A)$, $f_3(A,B,C)$

Step 2: Add $f_6(C) = \Sigma_B f_2(B) f_5(B,C)$ Remove: $f_2(B)$, $f_5(B,C)$

Step 3: Add $f_7(D) = \sum_{C} f_4(C,D) f_6(C)$ Remove: $f_4(C,D)$, $f_6(C)$

Last factor $f_7(D)$ is (possibly unnormalized) probability P(D)

Variable Elimination: Evidence

Computing posterior of guery variable given evidence is similar; suppose we observe C=c:

$$A \longrightarrow B \longrightarrow C$$
 $f_3(B,C)$

 $P(A|c) = \alpha P(A) P(c|A)$

= $\alpha P(A) \Sigma_B P(c|B) P(B|A)$

= $\alpha f_1(A) \Sigma_B f_3(B,c) f_2(A,B)$

= $\alpha f_1(A) \Sigma_B f_4(B) f_2(A,B)$

 $= \alpha f_1(A) f_5(A)$

 $= \alpha f_6(A)$

New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \Sigma_B f_2(A,B) f_4(B)$; $f_6(A) = f_1(A) f_5(A)$

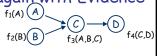
Variable Elimination with Evidence

Given query var Q, evidence vars E (observed to be e), remaining vars Z. Let F be set of factors involving CPTs for $\{Q\} \cup Z$.

- 1. Replace each factor f∈F that mentions a variable(s) in **E** with its restriction $f_{\boldsymbol{E}=\boldsymbol{e}}$ (somewhat abusing notation)
- 2. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**.
- 3. Run variable elimination as above.
- 4. The remaining factors refer only to the guery variable Q. Take their product and normalize to produce P(Q)

VE: Example 2 again with Evidence

Factors: f₁(A) f₂(B) f₃(A,B,C) f₄(C,D) Query: P(A)? Evidence: D = d Elim. Order: C, B



Restriction: replace $f_4(C,D)$ with $f_5(C) = f_4(C,d)$

Step 1: Add $f_6(A,B) = \Sigma_C f_5(C) f_3(A,B,C)$

Remove: $f_3(A,B,C)$, $f_5(C)$

Step 2: Add $f_7(A) = \Sigma_B f_6(A,B) f_2(B)$

Remove: $f_6(A,B)$, $f_2(B)$

Last factors: $f_7(A)$, $f_1(A)$. The product $f_1(A) \times f_7(A)$ is (possibly unnormalized) posterior. So... $P(A|d) = \alpha f_1(A)$ \ddot{x} f₇(A).

Some Notes on the VE Algorithm

- After iteration j (elimination of Z_j), factors remaining in set F refer only to variables X_{j+1} ... Z_n and Q. No factor mentions an evidence variable E after the initial restriction.
- Number of iterations: linear in number of variables
- Complexity is linear in number of vars and exponential in size of the largest factor.
 - Recall each factor has exponential size in its number of
 - Can't do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger.

Some Notes on the VE Algorithm

- The size of the resulting factors is determined by elimination ordering! (We'll see this in detail)
- For polytrees, easy to find good ordering (e.g., work outside in).
- For general BNs, sometimes good orderings exist, sometimes they don't (then inference is exponential in number of vars).
 - Simply *finding* the optimal elimination ordering for general BNs is NP-hard.
 - Inference in general is NP-hard in general BNs

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larso

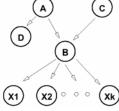
25

Elimination Ordering: Polytrees

- Inference is linear in size of network
 - ordering: eliminate only "singly-connected" nodes
 - e.g., in this network, eliminate D, A, C, X1,...; or eliminate X1,... Xk, D, A, C; or mix up...

- result: no factor ever larger (X1) than original CPTs

 eliminating B before these gives factors that include all of A,C, X1,... Xk!!!



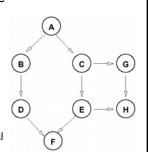
26

Effect of Different Orderings

 Suppose query variable is D. Consider different orderings for this network

- A,F,H,G,B,C,E:
 good: why?
- E,C,A,B,G,H,F: bad: why?
- Which ordering creates smallest factors?
 - either max size or total
- which creates largest factors?

28486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larso



27

Relevance

- Certain variables have no impact on the query.
 - In ABC network, computing Pr(A) with no evidence requires elimination of B and C.
 - But when you sum out these vars, you compute a trivial factor (whose value are all ones); for example:
 - eliminating C: $f_4(B) = \Sigma_C f_3(B,C) = \Sigma_C Pr(C|B)$
 - 1 for any value of B (e.g., $Pr(c|b) + Pr(\sim c|b) = 1$)
- No need to think about B or C for this query

Relevance: A Sound Approximation

- Can restrict attention to *relevant* variables. Given query Q, evidence **E**:
 - Q is relevant
 - if any node Z is relevant, its parents are relevant
 - if E∈E is a descendent of a relevant node, then E is relevant
- We can restrict our attention to the subnetwork comprising only relevant variables when evaluating a query Q

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larse

29

Next Class

- Decision making
 - Utility Theory
 - Decision Trees
- Russell & Norvig: Chapter 16

1486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

30