
CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

1

Adversarial Search

CS 486 /686
May 18, 2006

University of Waterloo

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

2

Introduction

• So far we have studied environments
where there is only a single-agent

• Today we look at what happens if we are
in a setting where there are multiple
agents planning against each other
– Game theory: zero sum games

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

3

Outline

• Games
• Minimax search
• Evaluation functions
• Alpha-beta pruning
• Coping with chance
• Game programs

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

4

Games
• Games are one of the oldest, most well-studied

domains in AI
• Why?

– They are fun
– Games are usually easy to represent and the rules

are clear
– State spaces can be very large (so more challenging

than “toy problems”)
• In chess the search tree has ~10154 nodes

– Like the “real world” in that decisions have to be
made and time is vitally important

– Easy to determine when a program is doing well
• i.e. it wins

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

5

Types of games
• Perfect vs imperfect information

– Perfect info means that you can see the
entire state of the game

– Chess, checkers, othello, go,…
– Imperfect info games include scrabble,

poker, most card games
• Deterministic vs stochastic

– Chess is deterministic
– Backgammon is stochastic

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

6

Games as search problems
• Consider a 2-player perfect information game

– State: board configuration plus the player who’s
turn it is to move

– Successor function: given a state returns a list of
(move,state) pairs, indicating a legal move and the
resulting board

– Terminal state: states where there is a
win/loss/draw

– Utility function: assigns a numerical value to
terminal states (e.g. In chess +1 for a win, -1 for a
loss, 0 for a draw)

– Solution: a strategy (way of picking moves) that
wins the game

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

7

Game search challenge
• What makes game search challenging?

– There is an opponent!
– The opponent is malicious – it wants to win (i.e. it is

trying to make you lose)
– We need to take this into account when choosing

moves
• Simulate the opponent’s behaviour in our search

• Notation: One player is called MAX (who
wants to maximize its utility) and one player
is called MIN (who wants to minimize its
utility)

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

8

Example: Tic-Tac-Toe

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

MAX’s job is to use
the search tree to
determine the best
move

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

9

Optimal strategies
• In standard search the optimal solution is

a sequence of moves leading to a winning
terminal state

• But MIN has something to say about this
• Strategy (from MAX’s perspective):

– Specify a move for the initial state, specify a
move for all possible states arising from
MIN’s response, then all possible responses
to all of MIN’s responses to MAX’s previous
move…..

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

10

Optimal strategies
• Want to find the optimal strategy

– One that leads to outcomes at least as good
as any other strategy, given that MIN is
playing optimally

– Equilibrium (game theory)
– Zero-sum games of perfect information are

“easy games” from a game theoretic
perspective

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

11

Minimax Value
MINIMAX-VALUE(n) =

Utility(n) if n is a terminal state

Maxs ∈ Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins ∈ Succ(n) MINIMAX-VALUE(s) if n is a MIN node

MAX

MIN

3 12 8 2 14 5 264

3 2 2

3

a 1 a 2 a 3

2b 3b1b 2c1c 3c 2d1d 3d

A

B C D

ply

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

12

Minimax algorithm

Returns action
corresponding
to best
possible move

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

13

Properties of Minimax
• Completeness:

– Yes, if tree is finite
• Time complexity:

– O(bm)
• Space complexity:

– O(bm) (it is DFS)
• Optimality:

– Yes, assuming an optimal opponent
– If MIN does not play optimally then we might be

able to do better following a different strategy

m is depth of the tree

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

14

Minimax and multi-player games
to move

A

B

C

A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,−1) (5,−1,−1) (−1, 5, 2) (7, 7,−1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (−1, 5, 2) (5, 4, 5)

(1, 2, 6) (−1, 5, 2)

(1, 2, 6)

X

Can not handle alliances, sidepayments….

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

15

• Can we now write a program that will
play chess reasonably well?
– For chess b~35 and m~100
– Do we really need to look at all those

nodes?

Chess

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

16

Alpha-Beta Pruning
• No!

– If we are smart (and lucky) we can do
pruning
• Eliminate large parts of the tree from

consideration
• Alpha-Beta pruning applied to a minimax

tree
– Returns the same decision as minimax
– Prunes branches that cannot influence final

decision

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

17

Alpha-Beta Pruning
• Alpha:

– Value of best (highest value) choice we have found
so far on the path for MAX

• Beta:
– Value of best (lowest value) choice we have found

so far on path for MIN
• Update alpha and beta as search continues
• Prune as soon as the value of the current node

is known to be worse than current alpha or
beta values for MAX or MIN

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

18

Alpha-Beta example

MAX

MIN

[-inf, inf]

3

[-inf, 3]

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

19

Alpha-Beta example

MAX

MIN

3 12

[-inf,3]

[-inf,inf]

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

20

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

21

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

22

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

[3,inf]

2

[-inf,2]

Prune
remaining
children

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

23

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,14]

[3,14]

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

24

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[-inf,5]

[3,5]

5

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

25

Alpha-Beta example

MAX

MIN

3 12 8

[3,3]

2

[-inf,2]

14

[2,2]

[3,3]

5 2

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

26

Properties of Alpha-Beta

• Pruning does not affect the final result
– You prune parts of the tree that you would

never reach in actual play
• The order in which moves are evaluated

are important
– With bad move ordering will prune nothing
– With perfect node ordering can reduce

time complexity to O(bm/2)

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

27

Real-time decisions
• Alpha-beta can be a huge improvement

over minimax
– Still not good enough as we need to search

all the way to terminal states for at least
part of search space

– Need to make a decision about a move
quickly

• Heuristic evaluation function + cutoff
test

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

28

Evaluation functions

• Apply an evaluation function to a state
– If terminal state, function returns actual

utility
– If non-terminal, function returns estimate

of the expected utility (i.e. the chance of
winning from that state)

– Function must be fast to compute

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

29

Evaluation functions

• Evaluation functions can be given by the
designer of the program (using expert
knowledge) or learned from experience

• If features can be judged independently,
a weighted linear function is good
– w1f1(s)+w2f2(s)+…+wnfn(s) with s as board state

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

30

Cutting off search
• Instead of searching until we find a

terminal state, we can cut search sooner
and apply the evaluation function

• When?
– Arbitrarily (but deeper is better)
– Quiescent states

• States that are “stable” – not going to change
value (by a lot) in the near future

– Singular extensions
• Searching deeper when you have a move that is

“clearly better” (i.e. moving the king out of
check)

• Can be used to avoid the horizon effect

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

31

Cutting off search
• How deep do we need to search?

– Novice chess human player
• 5-ply (minimax)

– Master chess human player
• 10-ply (alpha-beta)

– Grandmaster chess human player
• 14-ply + a fantastic evaluation function, opening

and endgame databases,…, special purpose
hardware would be nice but is no longer really
needed (Fritz)

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

32

Stochastic games
• In games like Backgammon chance plays a role

CHANCE

MIN

MAX

CHANCE

MAX

. . .

. . .

B

2 1 −1 1−1

. . .

1,1
1/36

1,2
1/18

TERMINAL

1,2
1/18

......

.........

......

1,1
1/36

...

......

...
C

. . .

1/18
6,5 6,6

1/36

1/18
6,5 6,6

1/36

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

33

Stochastic games
• Need to consider best/worst cases +

probability they will occur
• Recall: Expected value of a random

variable x
E[x]=∑x∈ X P(x)x

• Expectiminimax is like minimax but
at chance nodes compute the
expected value

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

34

Expectiminimax

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

35

Expectiminimax

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

WARNING: exact values do matter! Order-preserving
transformations of the evaluation function can change the choice
of moves. Must have positive linear transformations only

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

36

Some Game Programs

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

37

Checkers: Tinsley vs. Chinook

Mr. Tinsley suffered his 4th and 5th losses ever
against Chinook

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

38

Checkers
• Chinook: http://www.cs.ualberta.ca/~chinook

– World Man-Machine Checkers Champion
– Alpha-beta search
– Opening database
– Its secret weapon: Endgame database

• Precomputed database of all 444 billion
positions with 8 or fewer pieces, each with
perfect win/loss/draw info

• Perfect knowledge into the search
– Checkers is now dominated by computers

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

39

Chess: Kasparov vs. Deep Blue

Kasparov

5’10”
176 lbs
34 years
50 billion neurons

2 pos/sec
Extensive
Electrical/chemical
Enormous

Height
Weight
Age

Computers

Speed
Knowledge

Power Source
Ego

Deep Blue

6’ 5”
2,400 lbs

4 years
32 RISC processors

+ 256 VLSI chess engines
200,000,000 pos/sec

Primitive
Electrical

None

Jonathan Schaeffer

1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

40

Chess
• Its secret:

– Specialized chess processor + special-
purpose memory optimization

– Very sophisticated evaluation function
• Expert features and hand-tuned weights

– Opening and closing books
– Alpha-beta + improvements (searching up to

40 ply deep!)
– Search over 200 million positions per second

(though lots of these possible moves are silly
moves by human standards…)

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

41

Chess

• There are now programs running on PCs
that are on par with human champions
– Deep Junior vs Kasparov in 2003: 3/3 tie
– Deep Junior: 8 CPU, 8GB RAM, Windows

2000, 2000000 pos/second
• Is Chess still a human game or have

computers conquered it?

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

42

Backgammon
• TD-Gammon (Gerry Tesauro at IBM)
• One of the top players in the world
• But only searches two moves ahead!
• Its secret: One amazing evaluation function

– Neural network trained with reinforcement learning
during ~1million games played against itself

– Humans play backgammon differently now, based on
what TD-Gammon learned about the game

– Very cool AI ☺

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

43

Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

1997: The Logistello software crushed Murakami
by 6 games to 0

Jonathan Schaeffer

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

44

Othello/Reversi
• Logistello (Michael Buro from U of Alberta)
• Human world champion crushed by the

program
– Humans no match for machine

• Its secret: Evaluation function
– Automatically discovered and tuned knowledge

• Samples patterns to see if its presence in a position can
be correlated with success

• Tuned 1.5 million parameters using self-play games with
feedback

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

45

Bridge
• GIB (Matt Ginsberg – U of Oregon)

– World’s first expert level bridge playing
program (Finished 12th in human world
championship in 1998)

– Humans are still doing better, but the gap
is narrowing quickly

• Its secrets:
– Does simulations for each decision

• Deals cards to opponents consistent with
available information

• Chooses action that maximizes expected return
• Plus other tricks…

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

46

Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills:

self-taught programmer
Author of Goemate (one of the best
Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

47

Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills:

self-taught programmer
Author of Goemate (arguably the

strongest Go programs)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor for
existing search techniques (b~100)
Current and future software must rely on
huge databases and pattern-recognition
techniques

Need to make strategic decisions – Which
battle is worth fighting?

Go has too high a branching factor for
existing search techniques (b~100)
Current and future software must rely on
huge databases and pattern-recognition
techniques

Need to make strategic decisions – Which
battle is worth fighting?

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

48

Summary
• Games pose lots of fascinating

challenges for AI researchers
• Minimax search allows us to play

optimally against an optimal opponent
• Alpha-beta pruning allows us to reduce

the search space
• A good evaluation function is key to

doing well
• Games are fun

CS486/686 Lecture Slides (c) 2006 K. Larson and P. Poupart

49

Next class

• We will begin reasoning under
uncertainty
– Chapter 13

