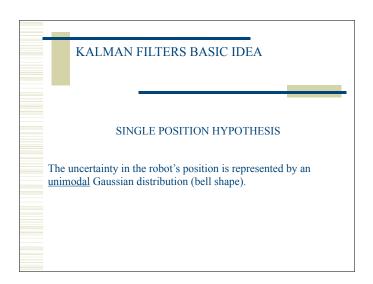
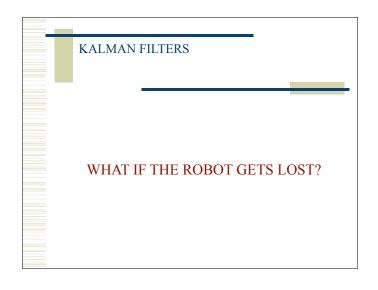
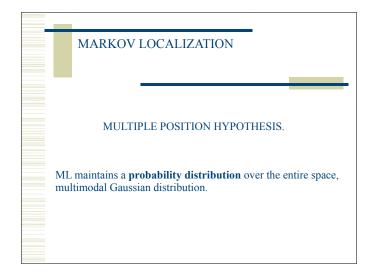
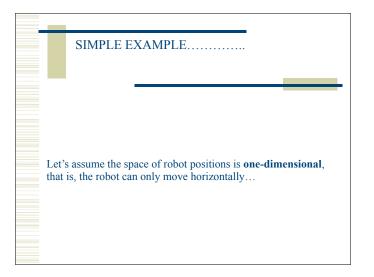


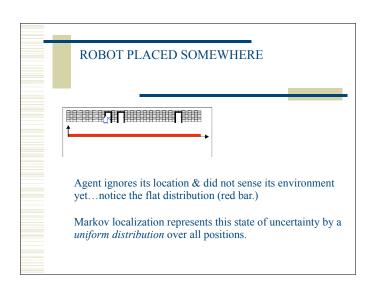
* Initially, work was focused on tracking using Kalman Filters * Then MARKOV LOCALIZATION came along and global localization could be addressed successfully.

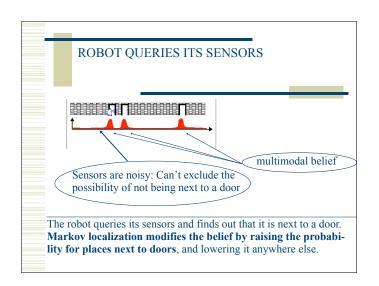


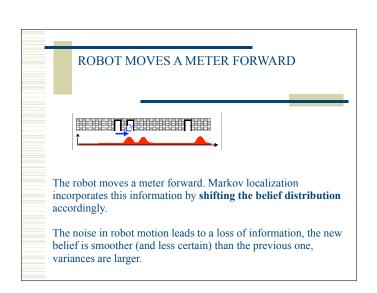


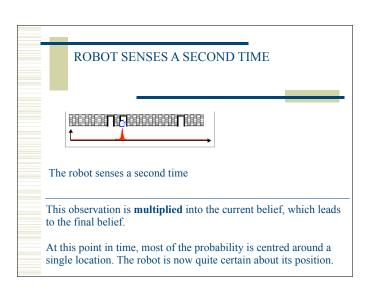


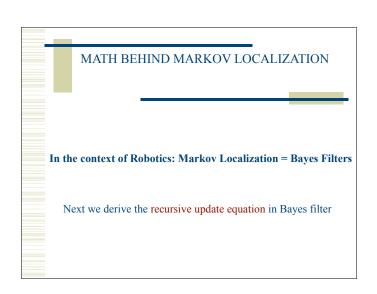












MATH BEHIND MARKOV LOCALIZATION

Bayes Filters address the problem of **estimating the robot's pose** in its environment, where the pose is represented by a **2-dimensional Cartesian** space with an **angular direction**.

Example: $pos(x,y, \theta)$

MATH BEHIND MARKOV LOCALIZATION

Bayes filters assume that the environment is Markov, that is past and future data are conditionally independent if one knows the current state

MATH BEHIND MARKOV LOCALIZATION

TWO TYPES OF MODEL:

Perceptual data such as laser range measurements, sonar, camera is denoted by o (observed)

Odometer data which carry information about robot's motion is denoted by \boldsymbol{a} (action)

MATH BEHIND MARKOV LOCALIZATION

$$Bel(x_t) = p(x_t|d_{0...t})$$

$$Bel(x_t) = p(x_t|o_t, a_{t-1}, o_{t-1}, a_{t-2}, \dots, o_0)$$

$$Bel(x_t) = \frac{p(o_t|x_t, a_{t-1}, \dots, o_0) \ p(x_t|a_{t-1}, \dots, o_0)}{p(o_t|a_{t-1}, \dots, o_0)}$$

MATH BEHIND MARKOV LOCALIZATION

$$Bel(x_t) = \frac{p(o_t|x_t, a_{t-1}, \dots, o_0) \ p(x_t|a_{t-1}, \dots, o_0)}{p(o_t|a_{t-1}, \dots, o_0)}$$

$$Bel(x_t) = \eta \ p(o_t|x_t, a_{t-1}, \dots, o_0) \ p(x_t|a_{t-1}, \dots, o_0)$$

$$\eta = p(o_t | a_{t-1}, \dots, o_0)^{-1}$$

MATH BEHIND MARKOV LOCALIZATION

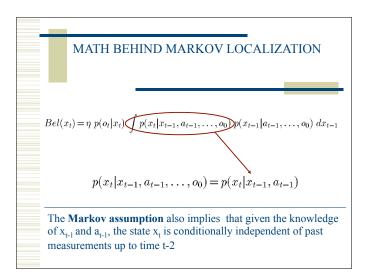
$$p(o_t|x_t, a_{t-1}, \dots, o_0) = p(o_t|x_t)$$

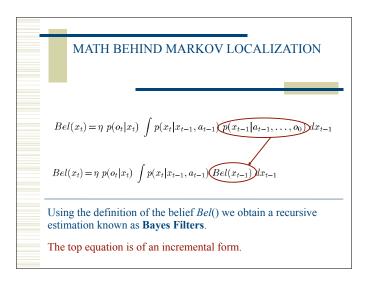
$$\uparrow$$
MARKOV ASSUMPTION

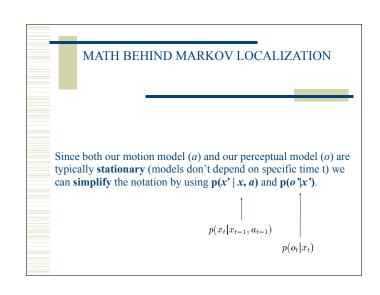
$$Bel(x_t) = \eta \ p(o_t|x_t, a_{t-1}, ..., o_0) \ p(x_t|a_{t-1}, ..., o_0)$$

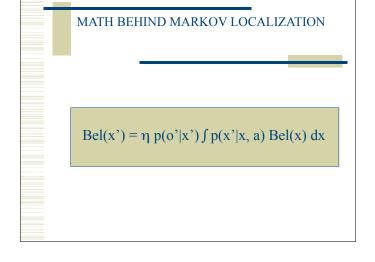
$$Bel(x_t) = \eta \ p(o_t|x_t) \ p(x_t|a_{t-1}, \dots, o_0)$$

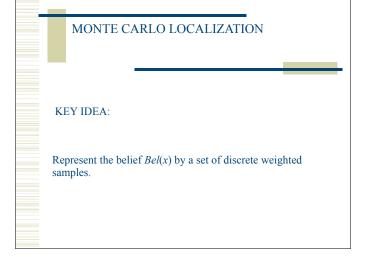
MATH BEHIND MARKOV LOCALIZATION We are working to obtain a **recursive form**...we integrate out x_{t-1} at time t-1 $Bel(x_t) = \eta \ p(o_t|x_t) \ p(x_t|a_{t-1}, \ldots, o_0)$ $Bel(x_t) = \eta \ p(o_t|x_t) \ p(x_t|x_{t-1}, a_{t-1}, \ldots, o_0) \ p(x_{t-1}|a_{t-1}, \ldots, o_0) \ dx_{t-1}$ Using the Theorem of Total Probability











MONTE CARLO LOCALIZATION

KEY IDEA:

```
Bel(x) = \{(l_1, w_1), (l_2, w_2), \dots (l_m, w_m)\}\
```

Where each l_i , $1 \le i \le m$, represents a location (x,y,θ)

Where each $w_i \ge 0$ is called the **importance factor**

In global localization, the initial belief is a set of locations drawn according a uniform distribution, each sample has weight = 1/m.

MCL: THE ALGORITHM

```
Algorithm MCL(X, a, o):
```

```
X' = \emptyset \qquad \qquad X' = \{(l_1, w_1)', \dots (l_m, w_m)'\} for i = 0 to m do generate random x from X according to w_1, \dots, w_m generate random x' \sim p(x'|a, x) w' = p(o|x') add \langle x', w' \rangle to X' endfor normalize the importance factors w' in X' return X'
```

The Recursive Update Is Realized in Three Steps

MCL: THE ALGORITHM

```
Algorithm MCL(X, a, o):
X' = \emptyset
for i = 0 to m do

generate random x from X according to w_1, \ldots, w_m

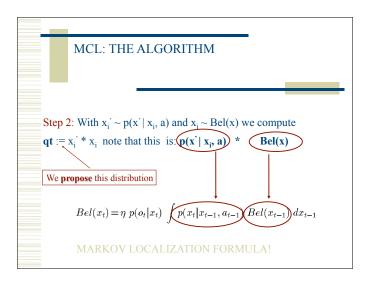
generate random x' \sim p(x'|a, x)
w' = p(o|x')
add \langle x', w' \rangle to X'
endfor
normalize the importance factors w' in X'
return X'
```

Step 1: Using **importance sample** from the weighted sample set representing $\sim \text{Bel}(x)$ pick a sample x_i : $x_i \sim \text{Bel}(x)$

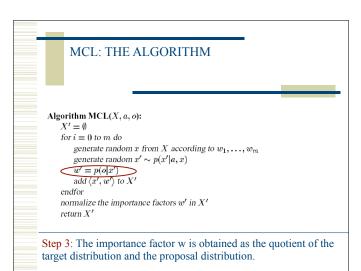
MCL: THE ALGORITHM

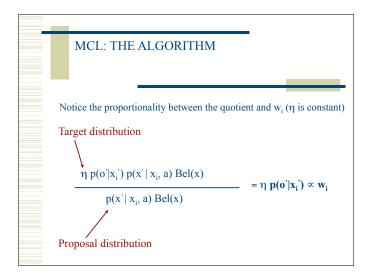
```
Algorithm MCL(X, a, o):
X' = \emptyset
for i = 0 to m do
generate random x from X according to w_1, \ldots, w_m
w' = p(o|x')
add \langle x', w' \rangle to X'
endfor
normalize the importance factors w' in X'
```

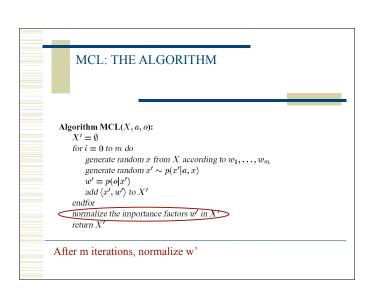
Step 2: Sample $x_i' \sim p(x'|a, x_i)$. Since x_i and a together belong to a distribution, we pick x_i^t according to this distribution, the one that has the highest probability is more likely to be picked.

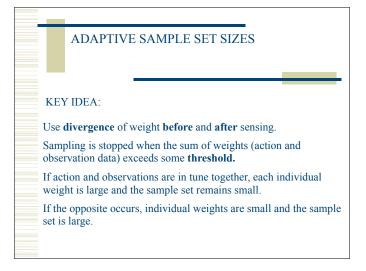


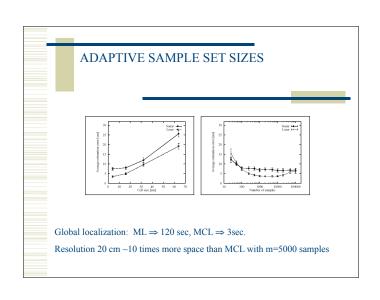
MCL: THE ALGORITHM The role of **qt** is to propose samples of the posterior distribution. This is not equivalent to the desired posterior.











CONCLUSION

- * Markov Localization method is a foundation for MCL
- * MCL uses random weighted samples to decide which states it evaluates
 - * "unlikely" states (low weight) are less probable to be evaluated
- $\mbox{\ensuremath{^{\ast}}}$ MCL is a more efficient, more effective method especially when used with adaptive sample set size.

REFERENCES

- D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments. *Journal of Artificial Intelligence Research*, 11:391–427, 1999.
- S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal distribution. In *Proceedings of the AAAI National Conference on Artificial Intelligence*, Austin, TX, 2000. AAAI.
- D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient position estimation for mobile robots. In *Proceedings of the National Conference on Artificial Intelligence (AAAI)*, Orlando, FL, 1999. AAAI.
- D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. *Robotics and Autonomous Systems*, 25(3-4):195–207, 1998.