Statistical Natural Language Processing

July 18, 2006 CS 486/686 University of Waterloo

Outline

- Introduction to Statistical NLP
- Statistical Language Models
- Information Retrieval
 - Evaluation Metrics
- Other Applications of Statistical NLP
- · Reading: R&N Sect. 23.1, 23.2

Symbolic NLP Insufficient

- Symbolic NLP generally fails because...
 - Grammars too complex to specify
 - NL is vague, imprecise, and ambiguous
 - NL is often context dependent

Motivation behind Statistical NLP

- Symbolic NLP involves:
 - Constructing a set of "rules" (eg. a grammar) for the language and the NLP task.
 - Applying the rules to the data.
- Success depends on how well the rules describe the data.
- How to ensure the rules fit the data well?
 Derive the rules from the data statistical natural language processing.

Statistical NLP

- · Statistical NLP involves:
 - Analyzing some (training) data to derive patterns and rules for the language and the NLP task.
 - Applying the rules to the (test) data.
- Symbolic NLP specifies how a language should be used, while statistical NLP specifies how a language is usually used.
- · Often both are needed hybrid models.

Statistical Language Models

- One of the most fundamental tasks in statistical NLP.
- A statistical / probabilistic language model defines a probability distribution over a (possibly infinite) set of strings.
- We'll look at two popular examples:
 - N-gram models: distribution over words
 - Probabilistic context free grammar

Unigram model

- Unigram: independent distribution P(w) for each word w in the lexicon
- · Given a document D,
 - $P(w) = \#w \text{ in } D / \Sigma_i \#w_i \text{ in } D$
 - Word sequence: $\Pi_i P(w_i)$
- Ex. 20-word sequence generated at random from a unigram model of the textbook:
 - logical are as are confusion a may right tries agent goal the was diesel more object then informationgathering search is

Bigram model

- Bigram: conditional distribution $P(w_i|w_{i-1})$ for each word w_i given the previous word w_{i-1}
- Given a document D,
 - $P(w_i|w_{i-1}) = \#(w_i,w_{i-1})$ in $D / \#w_{i-1}$ in D
 - Word sequence: $P(w_0) \prod_i P(w_i | w_{i-1})$
- Ex. word sequence generated at random from a bigram model of the textbook:
 - planning purely diagnostic expert systems are very similar computational approach would be represented compactly using tic tac toe a predicate

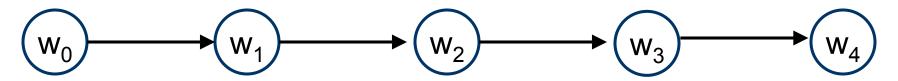
Trigram model

- Trigram: conditional distribution $P(w_i|w_{i-1},w_{i-2})$ for each word w_i given the previous two words
- Given a document D,
 - $P(w_i|w_{i-1},w_{i-2}) = \#(w_i,w_{i-1},w_{i-2})$ in $D / \#(w_{i-1},w_{i-2})$ in D
 - Word sequence: $P(w_0) P(w_1|w_0) \Pi_i P(w_i|w_{i-1},w_{i-2})$
- Ex. word sequence generated at random from a trigram model of the textbook:
 - planning and scheduling are integrated the success of naïve bayes model is just a possible prior source by that time

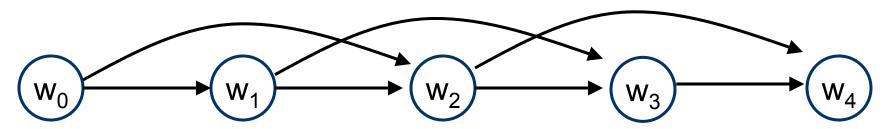
Graphically

· Unigram: zeroth-order Markov process

Bigram: first-order Markov process



· Trigram: second-order Markov process



N-gram models

- N-gram models:
 - Quality: language model improves with n
 - Learning: amount of data necessary increases exponentially with n
- Suppose corpus of k unique words and K total words:
 - Unigram model: K > k
 - Bigram model: K > k²
 - Trigram model: K > k³

Textbook

- Textbook has:
 - 15,000 unique words
 - 500,000 total words
- Model complexity:
 - Unigram model: 15,000 probabilities
 - Bigram model: 15,000² = 225 million probabilities
 - 99.8% of probabilities are zero!
 - Trigram model: $15,000^3 = 3.375$ trillion probs
 - · 99.999% of probabilities are zero!

Smoothing

- · Zero probabilities can be problematic:
 - Word sequence: $\Pi_i P(w_i|w_{i-1},w_{i-2},...) = 0$ as soon as \exists_i such that $P(w_i|w_{i-1},w_{i-2},...) = 0$
- · Solutions:
 - Add-one smoothing $\hat{P}(w_i|w_{i-1}) = [\#(w_i,w_{i-1})+1] / [\#w_{i-1}+k^2]$
 - Linear interpolation smoothing $\hat{P}(w_i|w_{i-1}) = c_2 P(w_i|w_{i-1}) + c_1 P(w_i)$ where $c_1 + c_2 = 1$

Probabilistic Context-Free Grammar (PCFG)

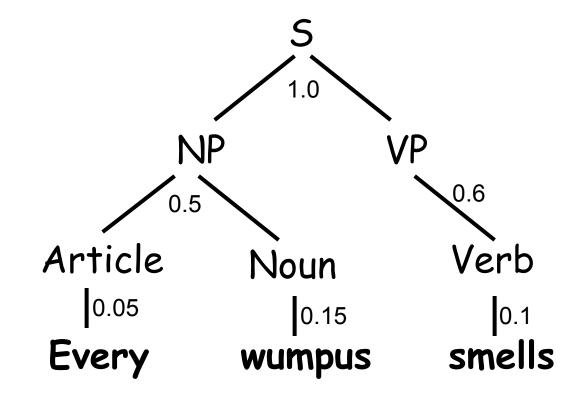
- N-gram models:
 - Basic probabilistic language models
- · Context-free grammars:
 - Sophisticated symbolic language models
- Probabilistic context free grammars:
 - Sophisticated probabilistic language models
 - Assign probabilities to rewrite rules

Example PCFG

```
 S → NP VP [1.00]
 NP → Pronoun [0.10]
 Name [0.10]
 Noun [0.20]
 Article Noun [0.50]
 NP PP [0.10]
 VP → Verb [0.60]
 VP NP [0.20]
 VP PP [0.20]
```

- Noun \rightarrow breeze[0.10] | wumpus[0.15] | agent[0.05] | ...
- Verb \rightarrow sees [0.15] | smells [0.10] | goes [0.25] | ...
- Article \rightarrow the [0.30] | a [0.35] | every [0.05] | ...

Example probabilistic parse tree



Parse tree prob: 1.0*0.5*0.6*0.05*0.15*0.1 = 0.000225

Learning PCFGs

- When corpus of parsed sentences available:
 - Learn probability of each rewrite rule P(lhs→rhs) = #(lhs→rhs) / #(lhs)
- · Problems:
 - But we need a CFG... which is hard to design
 - We also need to parse by hand lots of sentences... which takes a long time

Learning PCFGs

- Lots of texts are available, but not parsed...
 can we learn from those?
- Yes: use EM algorithm
 - E step: given rule probabilities, compute expected frequency of each rule in some corpus.
 - M step: given expected frequency of each rule, update the rule probabilities by normalizing the rule frequencies.
- · Problems:
 - EM gets stuck in local optima
 - Probabilistic parses often unintuitive to linguists

Learning PCFGs

- · Could we also learn without a grammar?
- Yes: for instance assume grammar is in Chomsky normal form (CNF)
 - Any CFG can be represented in CNF
 - Only two types of rule:
 - $\cdot X \rightarrow YZ$
 - $\cdot \times \rightarrow t$
 - But effective only for small grammars

Information Retrieval

- Information retrieval: task of finding documents that are relevant to a user
- Information retrieval components:
 - Document collection
 - Query posed
 - Resulting set of relevant documents
- · Examples:
 - www search engines
 - Text classification and clustering

Information Retrieval

- Initial attempts:
 - Parse documents into knowledge base of logical formulas
 - Parse query into a logical formula
 - Answer query by logical inference
- It failed because of ...
 - Ambiguity
 - Unknown context
 - Etc...

Information Retrieval

- Alternative:
 - Build unigram model for each document Di
 - Treat query Q as a bag of words
 - Find document D; that maximizes P(Q|D;)
- It works!

Example

- Query: {Bayes, information, retrieval, model}
- · Documents: each chapter of the textbook
- Build unigram model for each chapter
- · Computation:
 - $P(Q|D_i)$ = P(Bayes, information, retrieval, model | chapter i)
 - $P(Q|D_i')$: same as $P(Q|D_i)$ but with add-one smoothing

Example

Words	Query	Chapt 1 Intro	Chapt 13 Uncert.	Chapt 15 Time	Chapt 22 NLP	Chapt 23 Current
Bayes	1	5	32	38	0	7
information	1	15	18	8	12	39
retrieval	1	1	1	0	0	17
model	1	9	7	160	9	63
7	4	14,680	10,941	18,186	16,397	12,574
$P(Q D_i)$		1.5×10 ⁻¹⁴	2.8×10 ⁻¹³	0	0	1.2×10 ⁻¹¹
P(Q D _i ')		4.1×10 ⁻¹⁴	7.0×10 ⁻¹³	5.2×10 ⁻¹³	1.7×10 ⁻¹⁵	1.5×10 ⁻¹¹

Evaluation

- · Two measures:
 - Precision measures the proportion of documents that are actually relevant
 - false positive rate = 1 precision
 - Recall measures the proportion of all relevant documents in the result set
 - false negative rate = 1 recall

Evaluation

	In result set	Not in result set
Relevant	30	20
Not relevant	10	40

- Precision: 30/(30+10) = 0.75
 - False positive rate = 1 precision = 0.25
- Recall: 30/(30+20) = 0.6
 - False negative rate = 1 recall = 0.4

Tradeoff

- There is often a tradeoff between recall and precision
- · Perfect recall:
 - Return every document
 - But precision will be poor
- · Perfect precision:
 - Return only documents for which we are certain about their relevancy, or none at all
 - But recall will be poor

F1 Score

- F1 score (or F measure) combines precision and recall
- Definition: 2pr / (p+r)

- If
$$p = r \neq 0$$
, $f = p = r$

$$- If p = 0 or r = 0, f = 0$$

- Otherwise favours compromising

Precision	1	0.9	0.5	0.7
Recall	1	0.2	0.6	0.8
F Measure	1	0.33	0.55	0.75

IR Refinement

- · Refinements:
 - Case folding: convert to lower case
 - E.g. COUCH → couch, Italy → italy
 - Stemming: truncate words to their stem
 - · E.g. couches → couch, taken → take
 - Synonyms:
 - E.g. sofa → couch
- · Improves recall, but worsens precision

Statistical NLP Applications

- Many other NLP tasks are shifting toward statistical / hybrid approaches.
 - Segmentation
 - Part-of-speech tagging
 - Parsing
 - Text classification / clustering
 - Text summarization
 - Machine translation
 - Textual entailment
 - Semantic role labelling

Next Class

- · Next Class:
 - Robotics
 - ·Russell and Norvig Ch. 25