Communication

July 13, 2006 CS 486/686 University of Waterloo

Outline

- · Communication
- · Symbolic Natural Language Processing
- Reading: R&N Sect. 22.1-22.6

CS486/686 Lecture Slides (c) 2006 P. Poupari

2

Communication

- Communication: intentional exchange of information brought about by the production and perception of signs drawn from shared system of convention.
- · Language:
 - Enables us to communicate
 - Intimately tied to thinking

CS486/686 Lecture Slides (c) 2006 P. Pounart

3

Turing Test

 Can a computer fool a human to think that it is communicating with another human?

CS486/686 Lecture Slides (c) 2006 P. Poupart

Speech

- · Speech: communication act
 - Talking
 - Writing
 - Facial expression
 - Gesture

situation

Speaker

CS486/686 Lecture Slides (c) 2006 P. Pouna

utterances

Hearer

utterances

Intention

 Speaker S decides that there is some proposition P worth saying to hearer H.

Components of Communication

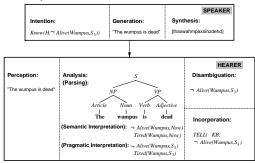
- Generation
 - Speaker plans how to turn proposition P into an utterance (i.e. a sequence of words W)
- Synthesis
 - Speaker produces the physical realization W' of the words W (i.e., vibration in air, ink on paper)

S486/686 Lecture Slides (c) 2006 P. Poupart

Components of Communication

- Perception
 - Hearer perceives physical realization W' as W₂ and decodes it as the words W₂ (i.e., speech recognition, optical character recognition)
- Analysis
 - Hearer infers W_2 has possible meanings $P_1,\,P_2,\,...,\,P_n$
 - Three parts:
 - Syntactic interpretation
 - · Semantic interpretation
 - · Pragmatic interpretation

CS486/686 Lecture Sädes (c) 2006 P. Poupart


Components of Communication

- Disambiguation
 - Hearer infers that speaker intended to convey P_i (where ideally P_i = P).
- Incorporation
 - Hearer decides to believe P; (or not).

CS486/686 Lecture Slides (c) 2006 P. Poupart

8

Components of Communication

CS486/686 Lecture Slides (c) 2006 P. Poupart

Difficulties

- How could communication go wrong?
 - Insincerity
 - Speech recognition errors
 - Ambiguous utterance
 - Different contexts

CS486/686 Lecture Slides (c) 2006 P. Poupart

10

Language

- · Formal language
 - Set of strings of terminal symbols (words)
 - Strict rules
 - E.g., first order logic, Java
- Natural language
 - No strict definition
 - Chinese, Danish, English, etc.

CS486/686 Lecture Slides (c) 2006 P. Poupart

11

Grammar

- Grammar specifies the compositional structure of complex messages
- Each string in a language can be analyzed/generated by the grammar
- · A grammar is a set of rewrite rules
 - $S \rightarrow NP VP$
 - Article \rightarrow the | a | an | ...

486/686 Lecture Slides (c) 2006 P. Poupart

Grammar Types

- · Regular grammar:
 - nonterminal → terminal [nonterminal]
 - $-S \rightarrow aS$
 - S → b
- Context free grammar (CFG):
 - nonterminal \rightarrow anything
 - S \rightarrow aSb

CS486/686 Lecture Slides (c) 2006 P. Poupart

13

15

Grammar Types

- · Context sensitive grammar:
 - More symbols on left-hand side
 - ASB → AAaBB
- · Recursively enumerable grammar:
 - No constraints

CS486/686 Lecture Slides (c) 2006 P. Poupart

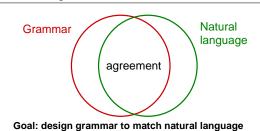
14

Lexicon example

- · Noun -> breeze | glitter | agent
- \cdot Verb \rightarrow is | see | smell | shoot
- · Adjective \rightarrow right | left | east | dead
- · Adverb → there | nearby | ahead
- · Pronoun → me | you | I | it
- · Name → John | Mary | Boston
- · Article → the | a | an

ecture Sädes (c) 2006 P. Poupart

Grammar example


- $5 \rightarrow NP VP \mid S Conjunction S$
- · NP → Pronoun | Name | Noun | Article Noun | NP PP | NP RelClause
- VP → Verb | VP NP | VP Adjective | VP PP | VP Adverb
- · PP → Preposition PP
- · RelClause > that VP

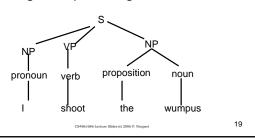
CS486/686 Lecture Slides (c) 2006 P. Poupart

16

Grammaticality Judgements

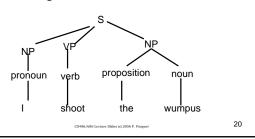
Set of strings

86/686 Lecture Slides (c) 2006 P. Poupart

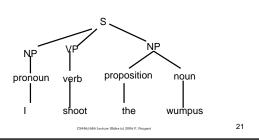

Grammaticality Judgements

- · Overgeneration examples:
 - Me go Boston.
 - I smell pit gold wumpus nothing east.
- Undergeneration example:
 - I think the wumpus is smelly

486/686 Lecture Slides (c) 2006 P. Poupart


Syntactic Analysis

 Parsing: process of finding a parse tree for a given input string


Top-down parsing

Start with S and search for a tree that has strings at leaves

Bottom up parsing

 Start with string and search for a tree that has S as root

Parsing efficiency

- Top-down and bottom up parsing inefficient...
 - Exponential running time
- Alternative: chart parsing
 - Dynamic programming
 - Cubic running time

CS486/686 Lecture Slides (c) 2006 P. Pounart

22

Augmented Grammars

- · Grammars tend to overgenerate
 - Ex: "me eat apple"
- · Augment grammar to require
 - Agreement between subject and verb
 - Ex: "I smells" vs "I smell"
 - Agreement between verb subcategory and complement
 - · Ex: "give the gold to me"
 - Ex: "give me the gold"

CS486/686 Lecture Slides (c) 2006 P. Poupart

23

• Example:

parses

- "Fall leaves fall and spring leaves spring"

Parse ambiguity

· Some sentences have many grammatical

8486/686 Lecture Slides (c) 2006 P. Poupart

Semantic Interpretation

- · Extract meaning from utterances
- Traditional approach
 - Express meaning with logic
- Problem
 - Ambiguous semantics
 - Ex: "Helicopter powered by human flies"

CS486/686 Lecture Slides (c) 2006 P. Poupart

25

Ambiguity

- · Possible causes:
 - Metonymy: figure of speech in which one object is used to stand for another
 - Metaphor: figure of speech in which a phrase with one literal meaning is used to suggest a different meaning by analogy
 - Vagueness
 - Unknown context

28486/686 Lecture Slides (c) 2006 P. Poupart

26

Context/Experience

- · Meaning often grounded in experience
- But humans and machines have different experiences because of different sensors...
- Is that a problem for natural language understanding?

6/686 Lecture Slides (c) 2006 P. Poupart

27

Next Class

- · Next Class:
 - ·Probabilistic Language Processing
 - •Russell and Norvig Ch. 23

CS486/686 Lecture Slides (c) 2006 P. Poupar