Neural Networks

July 6, 2006 CS 486/686 University of Waterloo

Outline

- · Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks
- · Reading: R&N Ch 20.5

CS486/686 Lecture Slides (c) 2006 P. Poupart

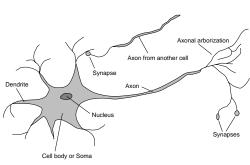
2

Brain

- · Seat of human intelligence
- · Where memory/knowledge resides
- · Responsible for thoughts and decisions
- · Can learn
- · Consists of nerve cells called neurons

ecture Slides (c) 2006 P. Poupart

Neuron



CS486/686 Lecture Slides (c) 2006 P. Pounart

Comparison

- Brain
 - Network of neurons
 - Nerve signals propagate in a neural network
 - Parallel computation
 - Robust (neurons die everyday without any impact)
- · Computer
 - Bunch of gates
 - Electrical signals directed by gates
 - Sequential computation
 - Fragile (if a gate stops working, computer crashes)

CS486/686 Lecture Slides (c) 2006 P. Poursart

5

3

Artificial Neural Networks

- · Idea: mimic the brain to do computation
- · Artificial neural network:
 - Nodes (a.k.a units) correspond to neurons
 - Links correspond to synapses
- · Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

CS486/686 Lecture Slides (c) 2006 P. Poupart

ANN Unit

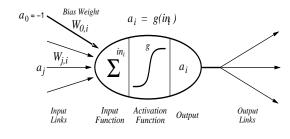
- · For each unit i:
- Weights: W_{ji}
 - Strength of the link from unit j to unit i
 - Input signals a_j weighted by W_{ji} and linearly combined: in, = Σ_j W_{ji} a_j
- · Activation function: q
 - Numerical signal produced: $a_i = g(in_i)$

S486/686 Lecture Slides (c) 2006 P. Poupart

7

9

ANN Unit



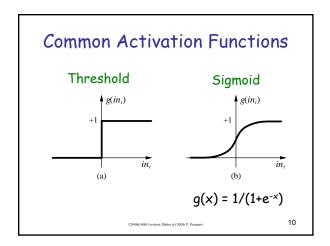
CS486/686 Lecture Slides (c) 2006 P. Poupart

Ω

Activation Function

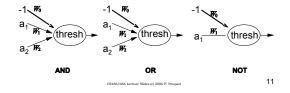
- · Should be nonlinear
 - Otherwise network is just a linear function
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

ture Slides (c) 2006 P. Poupart



Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean fns
- What should be the weights of the following units to code AND, OR, NOT?



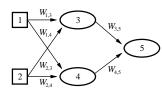
Network Structures

- · Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

S486/686 Lecture Slides (c) 2006 P. Poupart

Feed-forward network

· Simple network with two inputs, one hidden layer of two units, one output unit

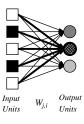


$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

$$= g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$$
13

Perceptron

· Single layer feed-forward network



14

Supervised Learning

- Given list of <input,output> pairs
- Train feed-forward ANN
 - To compute proper outputs when fed with
 - Consists of adjusting weights Wii
- · Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- · Learning is done separately for each unit
 - Since units do not share weights
- · Perceptron learning for unit i:
 - For each <inputs,output> pair do:
 - Case 1: correct output produced
 - ∀_j W_{ji} ← W_{ji}
 Case 2: output produced is 0 instead of 1
 - $\forall_i W_{ii} \leftarrow W_{ii} + \alpha_i$
 - Case 3: output produced is 1 instead of 0
 - ∀_i W_{ii} ← W_{ii} a_i
 - Until correct output for all training instances

16

Threshold Perceptron Learning

- Dot products: $a \bullet a \ge 0$ and $-a \bullet a \le 0$
- Perceptron computes
 - 1 when $a \bullet W = \Sigma_i a_i W_{ii} > 0$
 - 0 when $a \bullet W = \sum_{i=1}^{n} a_{i} W_{ii} < 0$
- If output should be 1 instead of 0 then
 - W ← W+a since $a \bullet (W+a) \ge a \bullet W$
- If output should be 0 instead of 1 then
 - W ← W-a since $a \bullet (W-a) \le a \bullet W$

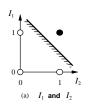
15

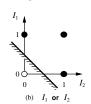
Threshold Perceptron Hypothesis Space

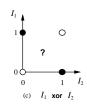
- Hypothesis space h_w:
 - All binary classifications with param. W s.t.
 - · a•W > 0 → 1
 - a•W < 0 → 0</p>
- Since a W is linear in W, perceptron is called a linear separator

Threshold Perceptron Hypothesis Space

· Are all Boolean gates linearly separable?





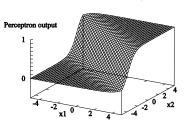


CS486/686 Lecture Slides (c) 2006 P. Poupar

19

Sigmoid Perceptron

· Represent "soft" linear separators



CS486/686 Lecture Slides (c) 2006 P. Poupart

20

Sigmoid Perceptron Learning

- Formulate learning as an optimization search in weight space
 - Since g differentiable, use gradient descent
- Minimize squared error:
 - $-E = 0.5 Err^2 = 0.5 (y h_w(x))^2$
 - · x: input
 - · y: target output
 - · hw(x): computed output

CS486/686 Lecture Slides (c) 2006 P. Pounart

21

Perceptron Error Gradient

• E = 0.5 Err² = 0.5 $(y - h_W(x))^2$

$$\begin{array}{l} \cdot \ \partial \mathsf{E}/\partial \mathsf{W}_{\mathsf{j}} = \mathsf{Err} \times \partial \mathsf{Err}/\partial \mathsf{W}_{\mathsf{j}} \\ = \mathsf{Err} \times \partial (\mathsf{y} - g(\Sigma_{\mathsf{j}} \ \mathsf{W}_{\mathsf{j}} \times_{\mathsf{j}})) \\ = -\mathsf{Err} \times g'(\Sigma_{\mathsf{j}} \ \mathsf{W}_{\mathsf{j}} \times_{\mathsf{j}}) \times x_{\mathsf{j}} \end{array}$$

• When g is sigmoid fn, then g' = g(1-g)

CS486/686 Lecture Slides (c) 2006 P. Poupart

22

Perceptron Learning Algorithm

- Perceptron-Learning(examples,network)
 - Repeat
 - For each e in examples do
 - in $\leftarrow \Sigma_j W_j x_j[e]$
 - Err ← y[e] g(in)
 - $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j[e]$
 - Until some stopping criteria satisfied
 - Return learnt network
- N.B. α is a learning rate corresponding to the step size in gradient descent

CS486/686 Lecture Slides (c) 2006 P. Poupart

23

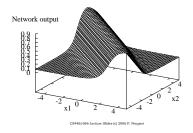
Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- With multiple layers, what fns can be represented?
 - Virtually any function!

CS486/686 Lecture Slides (c) 2006 P. Poupart

Multilayer Networks

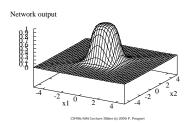
 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge



25

Multilayer Networks

 Adding two intersecting ridges (and thresholding) produces a bump



26

Multilayer Networks

- By tiling bumps of various heights together, we can approximate any function
- Training algorithm:
 - Back-propagation
 - Essentially gradient performed by propagating errors backward into the network
 - See textbook for derivation

1486/686 Lecture Sädes (c) 2006 P. Poupart

27

Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
 - NETtalk for pronouncing English text
 - Character recognition
 - Paint-quality inspection
 - Vision-based autonomous driving
 - Etc.

S486/686 Lecture Slides (c) 2006 P. Poursurt

28

Neural Net Drawbacks

- · Common problems:
 - How should we interpret units?
 - How many layers and units should a network have?
 - How to avoid local optimum while training with gradient descent?

CS486/686 Lecture Slides (c) 2006 P. Poupart

29

Next Class

- · Next Class:
 - ·Ensemble learning
 - ·Russell and Norvig Sect. 18.4

CS486/686 Lecture Slides (c) 2006 P. Poupart