Neural Networks

July 6, 2006 CS 486/686 University of Waterloo

Outline

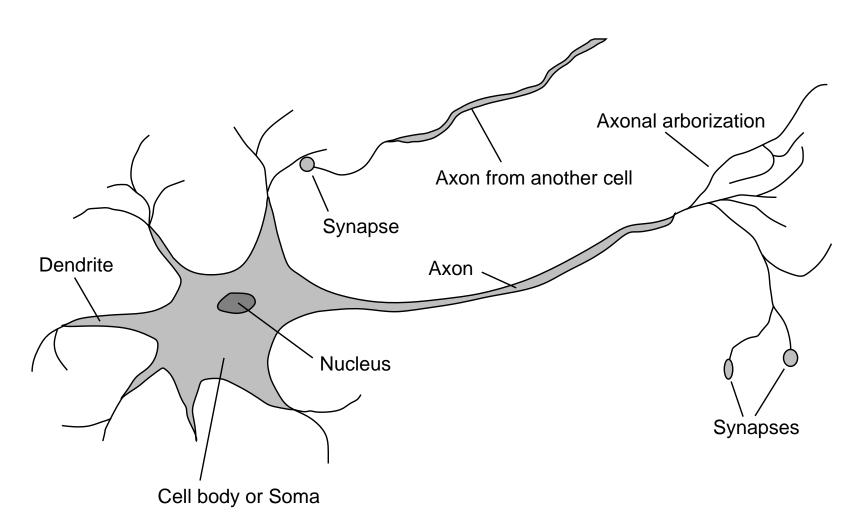
- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

· Reading: R&N Ch 20.5

Brain

- · Seat of human intelligence
- · Where memory/knowledge resides
- · Responsible for thoughts and decisions
- · Can learn
- Consists of nerve cells called neurons

Neuron



Comparison

Brain

- Network of neurons
- Nerve signals propagate in a neural network
- Parallel computation
- Robust (neurons die everyday without any impact)

· Computer

- Bunch of gates
- Electrical signals directed by gates
- Sequential computation
- Fragile (if a gate stops working, computer crashes)

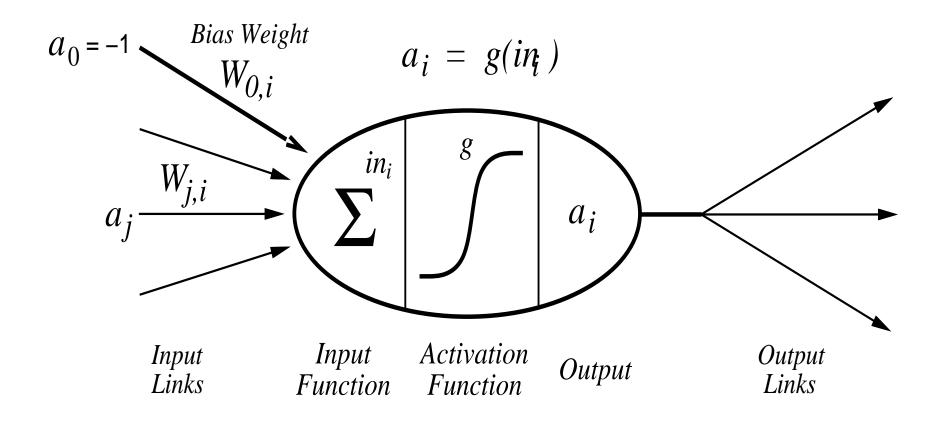
Artificial Neural Networks

- Idea: mimic the brain to do computation
- · Artificial neural network:
 - Nodes (a.k.a units) correspond to neurons
 - Links correspond to synapses
- · Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

- For each unit i:
- Weights: W_{ji}
 - Strength of the link from unit j to unit i
 - Input signals a_j weighted by W_{ji} and linearly combined: $in_i = \Sigma_j \ W_{ji} \ a_j$
- Activation function: g
 - Numerical signal produced: $a_i = g(in_i)$

ANN Unit

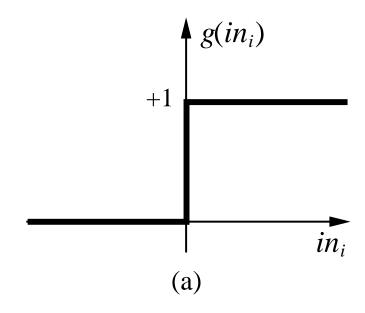


Activation Function

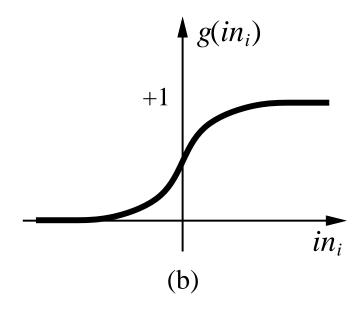
- Should be nonlinear
 - Otherwise network is just a linear function
- · Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0)
 when fed with the "wrong" inputs

Common Activation Functions

Threshold



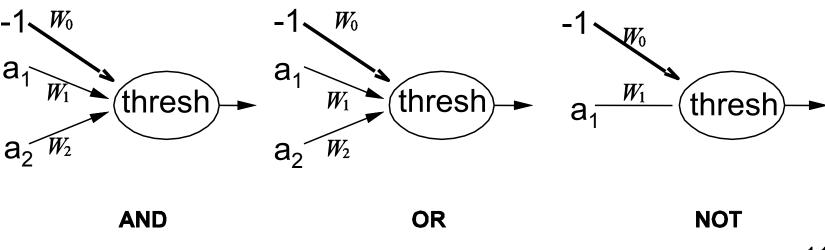
Sigmoid



$$g(x) = 1/(1+e^{-x})$$

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean fns
- What should be the weights of the following units to code AND, OR, NOT?

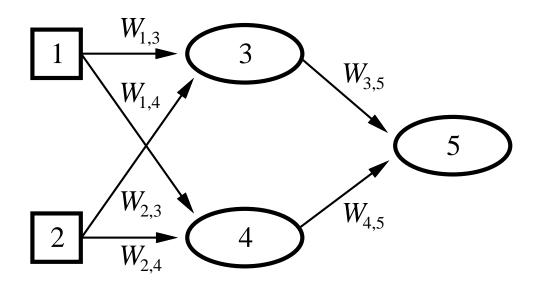


Network Structures

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit



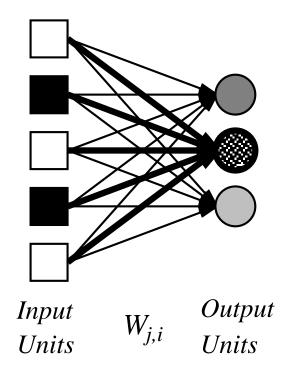
$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

$$= g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$$

$$(S486/686 \text{ Lecture Slides (c) 2006 P. Poupart})$$
13

Perceptron

· Single layer feed-forward network



Supervised Learning

- · Given list of <input,output> pairs
- Train feed-forward ANN
 - To compute proper outputs when fed with inputs
 - Consists of adjusting weights W_{ji}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- · Learning is done separately for each unit
 - Since units do not share weights
- Perceptron learning for unit i:
 - For each <inputs,output> pair do:
 - Case 1: correct output produced

$$- \forall_{j} W_{ji} \leftarrow W_{ji}$$

· Case 2: output produced is 0 instead of 1

$$- \forall_{j} W_{ji} \leftarrow W_{ji} + a_{j}$$

· Case 3: output produced is 1 instead of 0

$$\neg \forall_{j} W_{ji} \leftarrow W_{ji} \neg a_{j}$$

- Until correct output for all training instances

Threshold Perceptron Learning

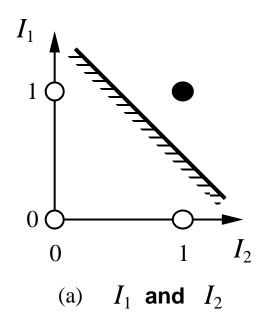
- Dot products: a•a ≥ 0 and -a•a ≤ 0
- Perceptron computes
 - 1 when $a \cdot W = \sum_{i} a_{i} W_{ii} > 0$
 - 0 when $a \cdot W = \sum_{i} a_{i} W_{ii} < 0$
- · If output should be 1 instead of 0 then
 - W \leftarrow W+a since $a \bullet (W+a) \ge a \bullet W$
- · If output should be 0 instead of 1 then
 - W \leftarrow W-a since $a \bullet (W-a) \leq a \bullet W$

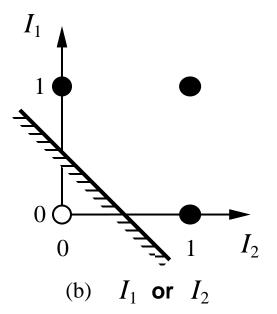
Threshold Perceptron Hypothesis Space

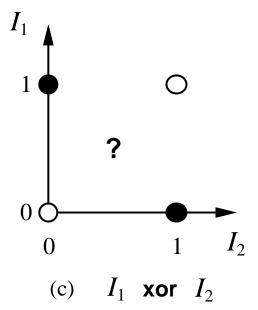
- Hypothesis space h_w:
 - All binary classifications with param. W s.t.
 - $a \bullet W > 0 \rightarrow 1$
 - $a \bullet W < 0 \rightarrow 0$
- Since a W is linear in W, perceptron is called a linear separator

Threshold Perceptron Hypothesis Space

Are all Boolean gates linearly separable?

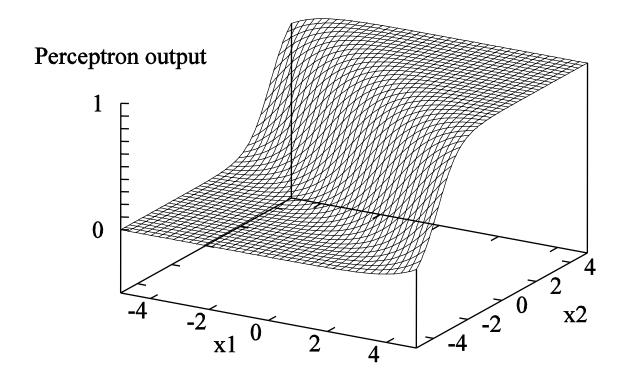






Sigmoid Perceptron

· Represent "soft" linear separators



Sigmoid Perceptron Learning

- Formulate learning as an optimization search in weight space
 - Since g differentiable, use gradient descent
- · Minimize squared error:
 - E = 0.5 Err² = 0.5 $(y h_W(x))^2$
 - · x: input
 - · y: target output
 - · hw(x): computed output

Perceptron Error Gradient

• E = 0.5 Err² = 0.5 $(y - h_W(x))^2$

•
$$\partial E/\partial W_j = Err \times \partial Err/\partial W_j$$

= $Err \times \partial (y - g(\Sigma_j W_j x_j))$
= $-Err \times g'(\Sigma_j W_j x_j) \times x_j$

• When g is sigmoid fn, then g' = g(1-g)

Perceptron Learning Algorithm

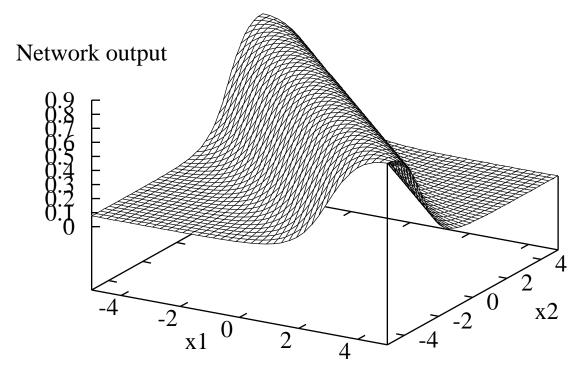
- Perceptron-Learning(examples, network)
 - Repeat
 - For each e in examples do
 - in $\leftarrow \Sigma_j W_j x_j[e]$ - Err $\leftarrow y[e]$ - g(in)- $W_i \leftarrow W_i + \alpha \times Err \times g'(in) \times x_i[e]$
 - Until some stopping criteria satisfied
 - Return learnt network
- N.B. α is a learning rate corresponding to the step size in gradient descent

Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- With multiple layers, what fns can be represented?
 - Virtually any function!

Multilayer Networks

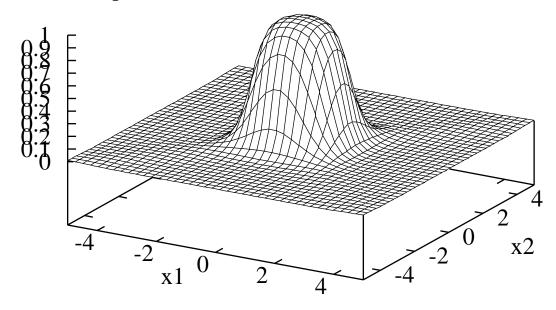
 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge



Multilayer Networks

 Adding two intersecting ridges (and thresholding) produces a bump

Network output



Multilayer Networks

- By tiling bumps of various heights together, we can approximate any function
- Training algorithm:
 - Back-propagation
 - Essentially gradient performed by propagating errors backward into the network
 - See textbook for derivation

Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
 - NETtalk for pronouncing English text
 - Character recognition
 - Paint-quality inspection
 - Vision-based autonomous driving
 - Etc.

Neural Net Drawbacks

- Common problems:
 - How should we interpret units?
 - How many layers and units should a network have?
 - How to avoid local optimum while training with gradient descent?

Next Class

- · Next Class:
 - ·Ensemble learning
 - ·Russell and Norvig Sect. 18.4