Statistical Learning Methods

June 29, 2006 CS 486/686 University of Waterloo

Outline

- Statistical learning Methods
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood
- Learning from complete Data
- · Reading: R&N Ch 20.1-20.2

2

Statistical Learning

- · View: we have uncertain knowledge of the world
- Idea: learning simply reduces this uncertainty

3

Candy Example

- · Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

Candy Example

- · You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h₂: 75% cherry + 25% lime h₃: 50% cherry + 50% lime

 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- · Data D: evidence about the world
 - d1: 1st candy is cherry
 - d2: 2nd candy is lime
 - d₃: 3rd candy is lime

Bayesian Learning

Prior: Pr(H)

· Likelihood: Pr(d|H)

• Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$

 Bayesian Learning amounts to computing the posterior using Bayes' Theorem: Pr(H|d) = k Pr(d|H)Pr(H)

CS486/686 Lecture Slides (c) 2006 P. Poupart

7

9

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|\mathbf{d}) = \sum_{i} Pr(X|\mathbf{d},h_{i})P(h_{i}|\mathbf{d})$ = $\sum_{i} Pr(X|h_{i})P(h_{i}|\mathbf{d})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

CS486/686 Lecture Slides (c) 2006 P. Poupart

8

Candy Example

- Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(d_j|\mathbf{h})$
- · Suppose first 10 candies all taste lime:
 - $-P(d|h_5) = 1^{10} = 1$
 - $-P(\mathbf{d}|\mathbf{h}_3) = 0.5^{10} = 0.00097$
 - $-P(d|h_1) = 0^{10} = 0$

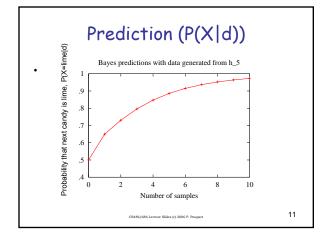
ecture Sädes (c) 2006 P. Poupart

Posterior (P(h, |d))

Posteriors given data generated from h_5

1 P(h_1|E) P(h_2|E) P(h_3|E) P(h_5|E) P(h_

10



Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (prior can be used to penalize complex hypotheses)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

CS486/686 Lecture Slides (c) 2006 P. Poupart

Maximum a posteriori (MAP)

- Idea: make prediction based on most probable hypothesis h_{MAP}
 - h_{MAP} = $argmax_{h_i} P(h_i|d)$
 - $P(X|d) \approx P(X|h_{MAP})$
- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

CS486/686 Lecture Slides (c) 2006 P. Poupart

13

Candy Example (MAP)

- · Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- ...

• After only 3 limes, it correctly selects ${\bf h}_5$

CS486/686 Lecture Slides (c) 2006 P. Poupar

. . .

Candy Example (MAP)

- But what if correct hypothesis is h₄?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts $h_{\rm 5}$
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

CS486/686 Lecture Slides (c) 2006 P. Poupart

15

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- No overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

CS486/686 Lecture Slides (c) 2006 P. Poupart

16

MAP computation

- · Optimization:
 - $-h_{MAP} = argmax_h P(h|d)$
 - = $argmax_h P(h) P(d|h)$
 - = $argmax_h P(h) \Pi_i P(d_i|h)$
- Product induces non-linear optimization
- · Take the log to linearize optimization
 - h_{MAP} = $argmax_h log P(h) + \Sigma_i log P(d_i|h)$

CS486/686 Lecture Slides (c) 2006 P. Poupart

17

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_i) \forall i,j$)
 - $-h_{MAP} = argmax_h P(h) P(d|h)$
 - $-h_{ML} = argmax_h P(d|h)$
- Make prediction based on h_{ML} only:
 - $P(X|\mathbf{d}) \approx P(X|h_{ML})$

CS486/686 Lecture Slides (c) 2006 P. Pounart

Candy Example (ML)

- · Prediction after
 - 1 lime: $h_{MI} = h_{5}$, $Pr(lime|h_{MI}) = 1$
 - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
 - ...
- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior = uniform prior)

CS486/686 Lecture Slides (c) 2006 P. Poupart

19

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - h_{ML} = $argmax_h \Sigma_i log P(d_i|h)$

CS486/686 Lecture Slides (c) 2006 P. Poupart

20

Statistical Learning

- · Use Bayesian Learning, MAP or ML
- · Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- · Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

86/686 Lecture Slides (c) 2006 P. Poursart

21

Simple ML example

- Hypothesis h_{θ} :
 - P(cherry)= θ & P(lime)= $1-\theta$
- Data **d**:
 - c cherries and I limes
- · ML hypothesis:
 - $\square\,\theta$ is relative frequency of observed data
 - $\Box \theta = c/(c+l)$
 - P(cherry) = c/(c+1) and P(lime)= 1/(c+1)

CS486/686 Lecture Slides (c) 2006 P. Poupart

22

Flavor

ML computation

- 1) Likelihood expression
 - $P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (1-\theta)^{l}$
- · 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + 1 \log (1-\theta)$
- 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|h_{\theta}))/d\theta = c/\theta I/(1-\theta)$
- · 4) ML hypothesis
 - $c/\theta 1/(1-\theta) = 0 \Rightarrow \theta = c/(c+1)$

CS486/686 Lecture Slides (c) 2006 P. Pounsa

23

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- · Data:
 - c cherries
 - gc green wrappers
 - · r_c red wrappers
 - I limes
 - \cdot g_{l} green wrappers
 - · r_i red wrappers

 $\begin{array}{c|c} P(F=\operatorname{cherry}) \\ \hline \\ Flavor \\ \hline & F & P(W=\operatorname{red}|F) \\ \hline & \operatorname{cherry} & \ominus_1 \\ \hline & \operatorname{lime} & \ominus_2 \\ \hline \\ Wrapper \\ \end{array}$

3486/686 Lecture Slides (c) 2006 P. Pounart

ML computation

- · 1) Likelihood expression
 - $\; \mathsf{P}(\mathbf{d} \,|\, \boldsymbol{h}_{\boldsymbol{\theta},\boldsymbol{\theta}_1,\boldsymbol{\theta}_2}) = \; \boldsymbol{\theta}^{\mathsf{c}}(1\!-\!\boldsymbol{\theta})^{\mathsf{l}} \; \boldsymbol{\theta}_1^{\mathsf{r}} \boldsymbol{\mathsf{c}}(1\!-\!\boldsymbol{\theta}_1)^{\mathsf{g}} \boldsymbol{\mathsf{c}} \; \boldsymbol{\theta}_2^{\mathsf{r}} \boldsymbol{\mathsf{l}}(1\!-\!\boldsymbol{\theta}_2)^{\mathsf{g}} \boldsymbol{\mathsf{l}}$
- 4) ML hypothesis
 - $-c/\theta 1/(1-\theta) = 0 \Rightarrow \theta = c/(c+1)$
- $r_c/\theta_1 g_c/(1-\theta_1) = 0 \rightarrow \theta_1 = r_c/(r_c+g_c)$
- $r_1/\theta_2 g_1/(1-\theta_2) = 0 \Rightarrow \theta_2 = r_1/(r_1+g_1)$

Naïve Bayes model

- · Want to predict a class C based on attributes A;
- · Parameters:
 - $\Box \theta = P(C=true)$
 - $\Box \theta_{i1} = P(A_i = true | C = true)$
 - $\Box \theta_{i2} = P(A_i = true | C = false)$
- · Assumption: Ai's are independent given C

Naïve Bayes model for Restaurant Problem

· Data:

Example	Attributes										Target
a.comingo:	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	5	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	5	F	F	Burger	0-10	T
X_4	т	F	т	T	Full	5	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	555	F	T	French	>60	F
X_6	F	T	F	T	Some	55	T	T	Italian	0-10	T
X_7	F	T	F	F	None	5	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	55	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	5	T	F	Burger	>60	F
X_{10}	т	T	Т	T	Full	\$\$\$	F	т	Italian	10-30	F
X_{11}	F	F	F	F	None	5	F	F	Thai	0-10	F
X_{12}	т	T	т	T	Full	5	F	F	Burger	30-60	T

- · ML sets
 - $\ \square \ \theta$ to relative frequencies of wait and ~wait
 - $\ \square \ \theta_{i1}, \theta_{i2}$ to relative frequencies of each attribute value given wait and ~wait

27

25

Naïve Bayes model vs decision trees

· Wait prediction for restaurant problem

Why is naïve Bayes less accurate than decision tree?

28

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v}$ = P(V|pa(V)=v)
- - $d_1 : \langle V_1 = v_{1,1}, V_2 = v_{2,1}, ..., V_n = v_{n,1} \rangle$
 - d_2 : $\langle V_1 = v_{1,2}, V_2 = v_{2,2}, ..., V_n = v_{n,2} \rangle$
- · Maximum likelihood:
 - Set $\theta_{V,p\alpha(V)=v}$ to the relative frequencies of the values of V given the values v of the parents of V

Next Class

- · Next Class:
 - ·Continue statistical learning
 - ·Learning from incomplete data
 - Russell and Norvig Sect. 20.3