Machine Learning

June 22, 2006 CS 486/686 University of Waterloo

Outline

- Inductive learning
- · Decision trees
- Reading: R&N Ch 18.1-18.3

00405 (505 I 05 I 0405 F I I D D.... I D D....

2

What is Machine Learning?

- · Definition:
 - A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

[T Mitchell, 1997]

686 Lecture Slides (c) 2006 K.Larson and P. Poupart

3

Examples

- · Backgammon (reinforcement learning):
 - T: playing backgammon
 - P: percent of games won against an opponent
 - E: playing practice games against itself
- · Handwriting recognition (supervised learning):
 - T: recognize handwritten words within images
 - P: percent of words correctly recognized
 - E: database of handwritten words with given classifications
- · Customer profiling (unsupervised learning):
 - T: cluster customers based on transaction patterns
 - P: homogeneity of clusters
 - E: database of customer transactions

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poursart

2

Representation

- Representation of the learned information is important
 - Determines how the learning algorithm will work
- Common representations:
 - Linear weighted polynomials
 - Propositional logic
 - First order logic
 - Bayes nets

Today's lecture

Special case

for neural

nets

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

Inductive learning (aka concept learning)

- Induction:
 - Given a training set of examples of the form (x,f(x))
 - x is the input, f(x) is the output
 - Return a function h that approximates f
 - · h is called the hypothesis

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

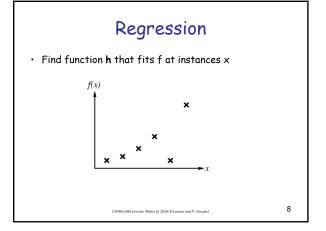
U

Classification

· Training set:

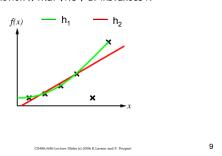
Sky	Humidity	Wind	Water	Forecast	EnjoySport	
Sunny	Normal	Strong	Warm	Same	Yes	
Sunny	High	Strong	Warm	Same	Yes	
Sunny	High	Strong	Warm	Change	No	
Sunny	High	Strong	Cool	Change	Yes	

- · Possible hypotheses:
 - h_1 : S=sunny \rightarrow ES=yes
 - h₂: Wa=cool or F=same → enjoySport



Regression

• Find function \mathbf{h} that fits \mathbf{f} at instances \mathbf{x}



Hypothesis Space

- Hypothesis space H
 - Set of all hypotheses h that the learner may consider
 - Learning is a search through hypothesis space
- · Objective:
 - Find hypothesis that agrees with training examples
 - But what about unseen examples?

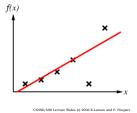
10

Generalization

- A good hypothesis will generalize well (i.e. predict unseen examples correctly)
- Usually...
 - Any hypothesis h found to approximate the target function f well over a sufficiently large set of training examples will also approximate the target function well over any unobserved examples

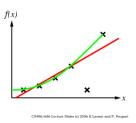
Inductive learning

- \cdot Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:



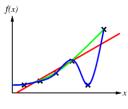
Inductive learning

- Construct/adjust h to agree with f on training set
- (his consistent if it agrees with f on all examples)
- E.g., curve fitting:



Inductive learning

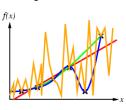
- \cdot Construct/adjust h to agree with f on training set
- · (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:



5/686 Lecture Stides (c) 2006 K.Larson and P. Poupart

Inductive learning

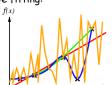
- \cdot Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:



ure Snors (c) 2000 a.Larson and r. roupart

Inductive learning

- · Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:



Ockham's razor: prefer the simplest hypothesis consistent with data

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

16

14

Inductive learning

- Finding a consistent hypothesis depends on the hypothesis space
 - For example, it is not possible to learn exactly f(x)=ax+b+xsin(x) when H=space of polynomials of finite degree
- A learning problem is realizable if the hypothesis space contains the true function, otherwise it is unrealizable
 - Difficult to determine whether a learning problem is realizable since the true function is not known

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Pounart

17

13

15

Inductive learning

- It is possible to use a very large hypothesis space
 - For example, H=class of all Turing machines
- But there is a tradeoff between expressiveness of a hypothesis class and complexity of finding simple, consistent hypothesis within the space
 - Fitting straight lines is easy, fitting high degree polynomials is hard, fitting Turing machines is very hard!

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

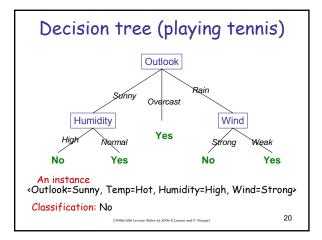
Decision trees

- · Decision tree classification
 - Nodes: labeled with attributes
 - Edges: labeled with attribute values
 - Leaves: labeled with classes
- Classify an instance by starting at the root, testing the attribute specified by the root, then moving down the branch corresponding to the value of the attribute
 - Continue until you reach a leaf
 - Return the class

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

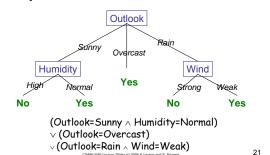
19

23



Decision tree representation

 Decision trees can represent disjunctions of conjunctions of constraints on attribute values



Decision tree representation

- Decision trees are fully expressive within the class of propositional languages
 - Any Boolean function can be written as a decision tree
 - Trivially by allowing each row in a truth table correspond to a path in the tree
 - · Can often use small trees
 - Some functions require exponentially large trees (majority function, parity function)
 - However, there is no representation that is efficient for all functions

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

22

Inducing a decision tree

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Pounart

Decision Tree Learning

 ${\bf function} \ {\tt DTL}(\textit{examples, attributes, default}) \ {\bf returns} \ {\tt a} \ {\tt decision} \ {\tt tree}$

if examples is empty then return default

else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples)

 $best \leftarrow \texttt{Choose-Attributes}(attributes, examples)$

tree ← a new decision tree with root test best for each value v of best do

 $\begin{array}{ll} \text{for each value } v_i \text{ of } best \text{ do} \\ examples_i \leftarrow \{\text{elements of } examples \text{ with } best \ = \ v_i \} \end{array}$

 $subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))$ add a branch to tree with label v_i and subtree subtree

 $\mathbf{return}\ \mathit{tree}$

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

Choosing attribute tests

- The central choice is deciding which attribute to test at each node
- We want to choose an attribute that is most useful for classifying examples

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

25

Example -- Restaurant

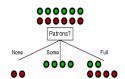
Example	Attributes										Target
pic	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	5\$5	F	Т	French	0-10	Т
X_2	Т	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	T	т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	Т	Full	\$	F	F	Burger	30-60	Т

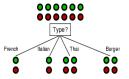
CR496 / 696 Lanting Philes (d. 2006 V. Lancon and D. Britania

26

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"





• Patrons? is a better choice

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poup

Using information theory

- To implement Choose-Attribute in the DTL algorithm
- Measure uncertainty (Entropy): $I(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$
- For a training set containing p positive examples and n negative examples:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

28

Information gain

 A chosen attribute A divides the training set E into subsets E₁, ..., E_v according to their values for A, where A has v distinct values.

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p+n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

 Information Gain (IG) or reduction in uncertainty from the attribute test:

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

· Choose the attribute with the largest IG

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

29

27

Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes *Patrons* and *Type* (and others too):

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .541 \text{ bits}$$

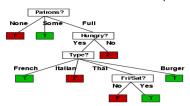
$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

Example

· Decision tree learned from the 12 examples:



 Substantially simpler than "true" tree---a more complex hypothesis isn't justified by small amount of data

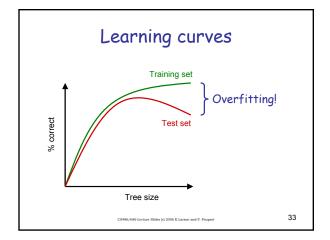
CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

Performance of a learning algorithm

- A learning algorithm is good if it produces a hypothesis that does a good job of predicting classifications of unseen examples
- · Verify performance with a test set
 - 1. Collect a large set of examples
 - 2. Divide into 2 disjoint sets: training set and test set
 - 3. Learn hypothesis h with training set
 - 4. Measure percentage of correctly classified examples by h in the test set
 - 5. Repeat 2-4 for different randomly selected training sets of varying sizes

00405 (605 1 ----- 001 ----- 0005 01 ----- 1 0 0

33



Overfitting

- Decision-tree grows until all training examples are perfectly classified
- · But what if...
 - Data is noisy
 - Training set is too small to give a representative sample of the target function
- · May lead to Overfitting!
 - Common problem with most learning algo

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Poupart

34

Overfitting

- Definition: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if there exists some alternative hypothesis h' ∈ H such that h has smaller error than h' over the training examples but h' has smaller error than h over the entire distribution of instances
- Overfitting has been found to decrease accuracy of decision trees by 10-25%

CS486/686 Lecture Slides (c) 2006 K.Larson and P. Pounart

35

Avoiding overfitting

Two popular techniques:

- 1. Prune statistically irrelevant nodes
 - Measure irrelevance with χ^2 test
- 2. Stop growing tree when test set performance starts decreasing
 - Use cross-validation

Cross-validation

- $\boldsymbol{\cdot}$ Split data in two parts, one for training, one for testing the accuracy of a hypothesis
- K-fold cross validation means you run k experiments, each time putting aside 1/k of the data to test on

37

Next Class

- · Next Class:
 - ·Midterm
 - ·Bring a non-programmable calculator
- Following class:
 Statistical Learning
 Russell and Norvig: Chapter 20