Reinforcement Learning

June 20, 2006
CS 486/686
University of Waterloo

Outline

- · Russell & Norvig Sect 21.1-21.3
- · What is reinforcement learning
- Temporal-Difference learning
- · Q-learning

Machine Learning

- Supervised Learning
 - Teacher tells learner what to remember
- · Reinforcement Learning
 - Environment provides hints to learner
- Unsupervised Learning
 - Learner discovers on its own

What is RL?

- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
 - Learner is not told what actions to take, but must discover them by trying them out and seeing what the reward is

What is RL

 Reinforcement learning differs from supervised learning

Reinforcement learning

Ouch!

Animal Psychology

- Negative reinforcements:
 - Pain and hunger
- Positive reinforcements:
 - Pleasure and food
- · Reinforcements used to train animals

Let's do the same with computers!

RL Examples

- Game playing (backgammon, solitaire)
- Operations research (pricing, vehicule routing)
- Elevator scheduling
- Helicopter control
- http://neuromancer.eecs.umich.edu/cgibin/twiki/view/Main/SuccessesOfRL

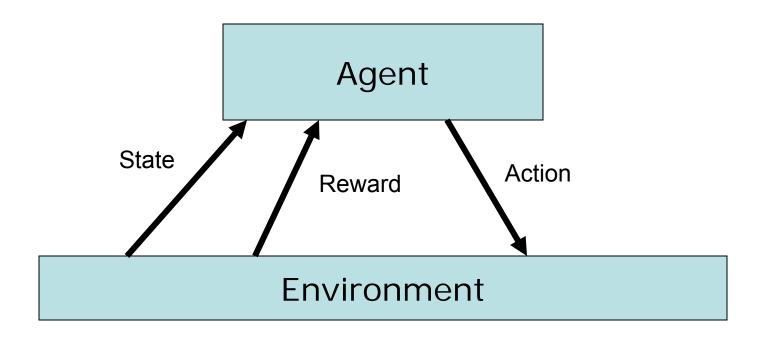
Reinforcement Learning

- Definition:
 - Markov decision process with unknown transition and reward models
- Set of states S
- Set of actions A
 - Actions may be stochastic
- Set of reinforcement signals (rewards)
 - Rewards may be delayed

Policy optimization

- Markov Decision Process:
 - Find optimal policy given transition and reward model
 - Execute policy found
- · Reinforcement learning:
 - Learn an optimal policy while interacting with the environment

Reinforcement Learning Problem

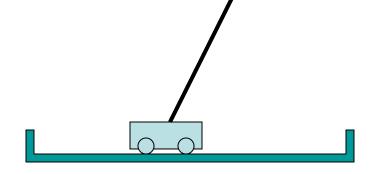


$$s0 \xrightarrow{a0} s1 \xrightarrow{a1} s2 \xrightarrow{a2} \cdots$$
 $r0 \xrightarrow{r1} r2 \xrightarrow{r2} \cdots$

Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where $0 \cdot \gamma < 1_{10}$

Example: Inverted Pendulum

- State: x(t),x'(t), θ(t),
 θ'(t)
- Action: Force F
- Reward: 1 for any step where pole balanced



Problem: Find $\delta:S\rightarrow A$ that maximizes rewards

RI Characterisitics

- · Reinforcements: rewards
- Temporal credit assignment: when a reward is received, which action should be credited?
- Exploration/exploitation tradeoff: as agent learns, should it exploit its current knowledge to maximize rewards or explore to refine its knowledge?
- · Lifelong learning: reinforcement learning

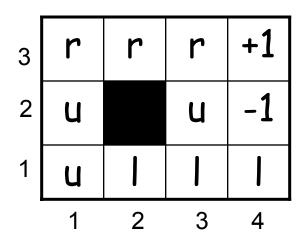
Types of RL

- Passive vs Active learning
 - Passive learning: the agent executes a fixed policy and tries to evaluate it
 - Active learning: the agent updates its policy as it learns
- Model based vs model free
 - Model-based: learn transition and reward model and use it to determine optimal policy
 - Model free: derive optimal policy without learning the model

Passive Learning

- Transition and reward model known:
 - Evaluate δ:
 - $V^{\delta}(s) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,\delta(s)) V^{\delta}(s')$
- · Transition and reward model unknown:
 - Estimate policy value as agent executes policy: $V^{\delta}(s) = E_{\delta}[\Sigma_{t} \gamma^{t} R(s_{t})]$
 - Model based vs model free

Passive learning



$$\gamma = 1$$

 $r_i = -0.04$ for non-terminal states

Do not know the transition probabilities

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

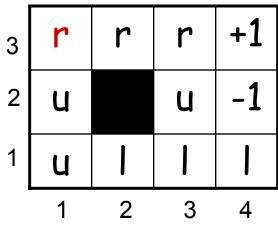
What is the value V(s) of being in state s?

Passive ADP

- Adaptive dynamic programming (ADP)
 - Model-based
 - Learn transition probabilities and rewards from observations
 - Then update the values of the states

$$\gamma = 1$$

ADP Example



 $r_i = -0.04$ for non-terminal states

$$V^{\delta}(s) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,\delta(s)) V^{\delta}(s')$$

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

$$P((2,3)|(1,3),r) = 2/3$$

 $P((1,2)|(1,3),r) = 1/3$
Use this information in

We need to learn all the transition probabilities!

Passive TD

- Temporal difference (TD)
 - Model free
- · At each time step
 - Observe: s,a,s',r
 - Update $V^{\delta}(s)$ after each move

$$- V^{\delta}(s) = V^{\delta}(s) + \alpha (R(s) + \gamma V^{\delta}(s') - V^{\delta}(s))$$

Learning rate

Temporal difference

TD Convergence

Thm: If α is appropriately decreased with number of times a state is visited then $V^{\delta}(s)$ converges to correct value

- α must satisfy:
 - $\Sigma_{t} \alpha_{t} \rightarrow \infty$
 - $\Sigma_{t}(\alpha_{t})^{2} < \infty$
- Often $\alpha(s) = 1/n(s)$
 - n(s) = # of times s is visited

Active Learning

- Ultimately, we are interested in improving $\boldsymbol{\delta}$
- Transition and reward model known:
 - $-V^*(s) = \max_a R(s) + \gamma \Sigma_{s'} Pr(s'|s,a) V^*(s')$
- · Transition and reward model unknown:
 - Improve policy as agent executes policy
 - Model based vs model free

Q-learning (aka active temporal difference)

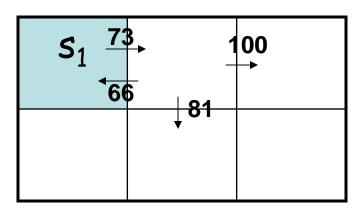
- Q-function: Q:5×A→ℜ
 - Value of state-action pair
 - Policy $\delta(s) = \operatorname{argmax}_a Q(s,a)$ is the optimal policy
- · Bellman's equation:

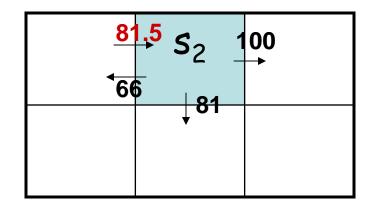
$$Q^*(s,a) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,a) max_{a'} Q^*(s',a')$$

Q-learning

- For each state s and action a initialize Q(s,a) (0 or random)
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(a,s)
 - Q(s,a) = Q(s,a) + α (r(s)+ γ max_{a'}Q(s',a') Q(s,a))
 - S=S'

Q-learning example





r=0 for non-terminal states γ =0.9 α =0.5

```
Q(s<sub>1</sub>,right) = Q(s<sub>1</sub>,right) + \alpha (r(s<sub>1</sub>) + \gamma max<sub>a</sub>, Q(s<sub>2</sub>,a') – Q(s<sub>1</sub>,right))
= 73 + 0.5 (0 + 0.9 max[66,81,100] – 73)
= 73 + 0.5 (17)
= 81.5
```

Q-learning

- For each state s and action a initialize Q(s,a) (0 or random)
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(a,s)
 - Q(s,a) = Q(s,a) + α (r(s)+ γ max_{a'}Q(s',a') Q(s,a))
 - S=S'

Exploration vs Exploitation

- If an agent always chooses the action with the highest value then it is exploiting
 - The learned model is not the real model
 - Leads to suboptimal results
- By taking random actions (pure exploration) an agent may learn the model
 - But what is the use of learning a complete model if parts of it are never used?
- Need a balance between exploitation and exporation

Common exploration methods

- ε-greedy:
 - With probability ε execute random action
 - Otherwise execute best action a* $a^* = argmax_a Q(s,a)$
- Boltzmann exploration

$$P(a) = \frac{e^{Q(s,a)/T}}{\Sigma_a e^{Q(s,a)/T}}$$

Exploration and Q-learning

- Q-learning converges to optimal Qvalues if
 - Every state is visited infinitely often (due to exploration)
 - The action selection becomes greedy as time approaches infinity
 - The learning rate a is decreased fast enough but not too fast

A Triumph for Reinforcement Learning: TD-Gammon

 Backgammon player: TD learning with a neural network representation of the value function:

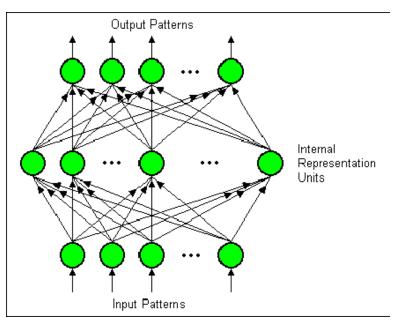


Figure 1. An Elustration of the multileyer perception exchitecture used in TD-Germmon's neural network. This exchitecture is also used in the popular backgropagetion learning procedure. Figure reproduced from [9].

Next Class

- Machine learning
- Decision trees
- · Russell and Norvig: chapter 18