Lecture 13

June 13, 2006 CS 486/686

Outline

- · Markov Decision Processes
- · Dynamic Decision Networks
- Russell and Norvig: Sect 17.1, 17.2 (up to p. 620), 17.4, 17.5

CS486/686 Lecture Slides (c) 2006 P. Pounart

2

Sequential Decision Making

Static Inference
Bayesian Networks

Static Decision Making
Decision Networks

Sequential Inference
Hidden Markov Models
Dynamic Bayesian Networks

Sequential Decision Making Markov Decision Processes Dynamic Decision Networks

CS486/686 Lecture Slides (c) 2006 P. Poupart

Sequential Decision Making

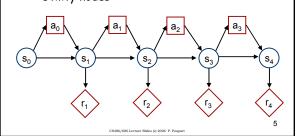
- · Wide range of applications
 - Robotics (e.g., control)
 - Investments (e.g., portfolio management)
 - Computational linguistics (e.g., dialogue management)
 - Operations research (e.g., inventory management, resource allocation, call admission control)
 - Assistive technologies (e.g., patient monitoring and support)

CS486/686 Lecture Slides (c) 2006 P. Poupart

4

Markov Decision Process

- · Intuition: Markov Process with...
 - Decision nodes
 - Utility nodes



Stationary Preferences

- · Hum... but why many utility nodes?
- $U(s_0, s_1, s_2, ...)$
 - Infinite process → infinite utility function
- Solution:
 - Assume stationary and additive preferences
 - $U(s_0, s_1, s_2, ...) = \Sigma_t R(s_t)$

486/686 Lecture Slides (c) 2006 P. Poupart

Discounted/Average Rewards

- If process infinite, isn't $\Sigma_{+} R(s_{+})$ infinite?
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma \le 1$
 - Finite utility: $\Sigma_{\rm t} \; \gamma^{\rm t} R(s_{\rm t})$ is a geometric sum
 - γ is like an inflation rate of $1/\gamma$ 1
 - Intuition: prefer utility sooner than later
- · Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

CS486/686 Lecture Slides (c) 2006 P. Pounset

Markov Decision Process

- · Definition
 - Set of states: 5
 - Set of actions (i.e., decisions): A
 - Transition model: $Pr(s_t|a_{t-1},s_{t-1})$
 - Reward model (i.e., utility): R(st)
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- · Goal: find optimal policy

CS486/686 Lecture Slides (c) 2006 P. Pounset

8

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales but increases storage costs

8486/686 Lecture Slides (c) 2006 P. Poupart

9

11

Policy

- · Choice of action at each time step
- · Formally:
 - Mapping from states to actions
 - i.e., $\delta(s_{+}) = a_{+}$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t . Why?

S486/686 Lecture Slides (c) 2006 P. Poupart

10

Policy Optimization

- Policy evaluation:
 - Compute expected utility
 - EU(δ) = $\Sigma_{t=0}^{h} \gamma^{t} \Pr(s_{t}|\delta) R(s_{t})$
- Optimal policy:
 - Policy with highest expected utility
 - EU(δ) ≤ EU(δ *) for all δ

CS486/686 Lecture Slides (c) 2006 P. Poupset

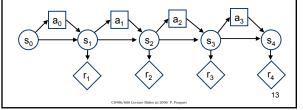
Policy Optimization

- Three algorithms to optimize policy:
 - Value iteration
 - Policy iteration
 - Linear Programming
- Value iteration:
 - Equivalent to variable elimination

486/686 Lecture Slides (c) 2006 P. Poupart

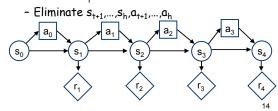
Value Iteration

- · Nothing more than variable elimination
- · Performs dynamic programming
- · Optimize decisions in reverse order



Value Iteration

- · At each t, starting from t=h down to 0:
 - Optimize a_t : EU($a_t|s_t$)?
 - Factors: $Pr(s_{i+1}|a_i,s_i)$, $R(s_i)$, for $0 \le i \le h$
 - Restrict s.

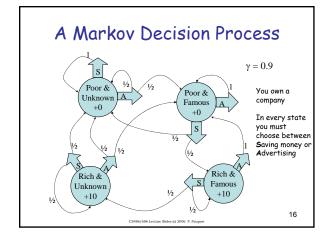


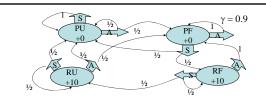
Value Iteration

- · Value when no time left:
 - $V(s_h) = R(s_h)$
- · Value with one time step left:
 - $V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}) + \gamma \Sigma_{s_h} Pr(s_h | s_{h-1}, a_{h-1}) V(s_h)$
- · Value with two time steps left:
 - $V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}) + \gamma \sum_{s_{h-1}} Pr(s_{h-1}|s_{h-2},a_{h-2}) V(s_{h-1})$
- •
- Bellman's equation:
 - $V(s_t)$ = $\max_{a_t} R(s_t)$ + $\gamma \Sigma_{s_{t+1}} Pr(s_{t+1}|s_t,a_t) V(s_{t+1})$
 - a_{t}^{\star} = $argmax_{a_{t}} R(s_{t}) + \gamma \sum_{s_{t+1}} Pr(s_{t+1}|s_{t},a_{t}) V(s_{t+1})$

196 Leature Stides (e) 2006 B. Barrenest

15





t	V(PU)	V(PF)	V(RU)	V(RF)
h	0	0	10	10
h-1	0	4.5	14.5	19
h-2	2.03	8.55	16.53	25.08
h-3	4.76	12.20	18.35	28.72
h-4	7.63	15.07	20.40	31.18
h-5	10.21	17.46	22.61	33.21

CS486/686 Lecture Slides (c) 2006 P. Poupart

Finite Horizon

- · When h is finite,
- · Non-stationary optimal policy
- · Best action different at each time step
- Intuition: best action varies with the amount of time left

486/686 Lecture Slides (c) 2006 P. Poupart

Infinite Horizon

- · When h is infinite.
- · Stationary optimal policy
- · Same best action at each time step
- Intuition: same (infinite) amount of time left at each time step, hence same best action
- Problem: value iteration does an infinite number of iterations...

19

Infinite Horizon

- Assuming a discount factor γ , after k time steps, rewards are scaled down by γ^k
- For large enough k, rewards become insignificant since $\gamma^k \rightarrow 0$
- Solution:
 - pick large enough k
 - run value iteration for k steps
 - Execute policy found at the kth iteration

S486/686 Lecture Slides (c) 2006 P. Poupart

Dynamic Decision Network

20

Computational Complexity

- · Space and time: O(k|A||S|2) ©
 - Here k is the number of iterations
- But what if |A| and |S| are defined by several random variables and consequently exponential?
- Solution: exploit conditional independence
 - Dynamic decision network

store Stiden (c) 2006 B Barranet

Dynamic Decision Network

- Similarly to dynamic Bayes nets:
 - Compact representation ©
 - Exponential time for decision making $\ensuremath{\mathfrak{S}}$

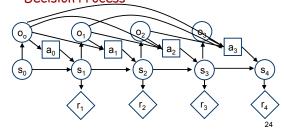
CS486/686 Lecture Slides (c) 2006. P. Poumert

23

21

Partial Observability

- · What if states are not fully observable?
- Solution: Partially Observable Markov Decision Process



Partially Observable Markov Decision Process (POMDP)

- Definition
 - Set of states: 5
 - Set of actions (i.e., decisions): A
 - Set of observations: O
 - Transition model: $Pr(s_t|a_{t-1},s_{t-1})$
 - Observation model: $Pr(o_t|s_t)$
 - Reward model (i.e., utility): R(st)
 - Discount factor: $0 \le \gamma \le 1$
 - Horizon (i.e., # of time steps): h
- · Policy: mapping from past obs. to actions

CS486/686 Lecture Slides (c) 2006. P. Poursett

25

POMDP

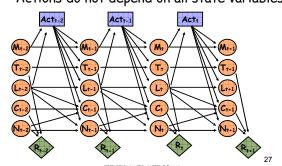
- Problem: action choice generally depends on all previous observations...
- Two solutions:
 - Consider only policies that depend on a finite history of observations
 - Find stationary sufficient statistics encoding relevant past observations

S486/686 Lecture Slides (c) 2006. P. Poursett

26

Partially Observable DDN

· Actions do not depend on all state variables



Policy Optimization

- Policy optimization:
 - Value iteration (variable elimination)
 - Policy iteration
- POMDP and PODDN complexity:
 - Exponential in |O| and k when action choice depends on all previous observations ⊕
 - In practice, good policies based on subset of past observations can still be found

1486/686 Lecture Slides (c) 2006 P. Poupart

28

COACH project

- Automated prompting system to help elderly persons wash their hands
- IATSL: Alex Mihailidis, Pascal Poupart, Jennifer Boger, Jesse Hoey, Geoff Fernie and Craig Boutilier

29

Aging Population

- Dementia
 - Deterioration of intellectual faculties
 - Confusion
 - Memory losses (e.g., Alzheimer's disease)
- · Consequences:
 - Loss of autonomy
 - Continual and expensive care required

186/686 Lecture Slides (c) 2006 P. Poupart

Intelligent Assistive Technology

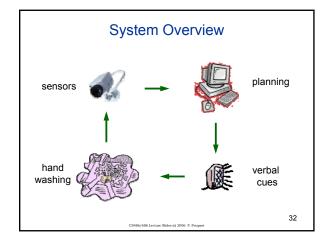
- · Let's facilitate aging in place
- Intelligent assistive technology
 - Non-obtrusive, yet pervasive
 - Adaptable
- · Benefits:
 - Greater autonomy
 - Feeling of independence

CS486/686 Lecture Slides (c) 2006. P. Pourset

31

33

35



Prompting Strategy

- · Sequential decision problem
 - Sequence of prompts
- · Noisy sensors & imprecise actuators
 - Noisy image processing, uncertain prompt effects
- · Partially unknown environment
 - Unknown user habits, preferences and abilities
- · Tradeoff between complex concurrent goals
 - Rapid task completion vs greater autonomy
- Approach: Partially Observable Markov Decision Processes (POMDPs)

entine Stiden (d. 2006. B. Burnerst

POMDP components

- State set **S** = dom(HL) x dom(WF) x dom(D) x ...
 - Hand Location ∈ {tap,water,soap,towel,sink,away,...}
 - Water Flow ∈ {on, off},
 - Dementia \in {high, low}, etc.
- Observation set **O** = dom(C) x dom(FS)
 - $\ Camera \in \{handsAtTap, \, handsAtTowel, \, \ldots \}$
 - Faucet sensor ∈ {waterOn, waterOff}
- · Action set A
 - DoNothing, CallCaregiver, Prompt ∈ {turnOnWater, rinseHands, useSoap, ...}

CS486/686 Lecture Slides (c) 2006 P. Poupart

. .

POMDP components

• Transition function Observation function Pr(s'|s,a) Pr(o|s) 0.3 sink,off 0.01 sink,off 0.95 tap,on 0.01 soap,off

- Reward function R(s,a)
 - Task completed → +100
 - Call caregiver → -30
 - Each prompt \rightarrow -1, -2 or -3

CS486/686 Lecture Slides (c) 2006 P. Poupart

Next Class

- Multi-agent systems
- · Game theory
- · Russell and Norvig: Chapter 17

1486/686 Lecture Slides (c) 2006 P. Poupart