
1

Lecture 11

June 6, 2006
CS 486/686

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

2

Outline

• Decision Networks
– Aka Influence diagrams

• Value of information
• Russell and Norvig: Sect 16.5-16.6

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

3

Decision Networks
• Decision networks (also known as

influence diagrams) provide a way of
representing sequential decision
problems
– basic idea: represent the variables in the

problem as you would in a BN
– add decision variables – variables that you

“control”
– add utility variables – how good different

states are

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

4

Sample Decision Network

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

5

Decision Networks: Chance Nodes
• Chance nodes

– random variables, denoted by circles
– as in a BN, probabilistic dependence on

parents

Disease

Fever

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt) = 0
Pr(neg|D,~bt) = 0
Pr(null|D,~bt) = 1

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

6

Decision Networks: Decision Nodes
• Decision nodes

– variables decision maker sets, denoted by
squares

– parents reflect information available at time
decision is to be made

• In example decision node: the actual values
of Ch and Fev will be observed before the
decision to take test must be made
– agent can make different decisions for each

instantiation of parents (i.e., policies)

Chills

Fever
BloodTst BT ∊ {bt, ~bt}

2

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

7

Decision Networks: Value Node
• Value node

– specifies utility of a state, denoted by a diamond
– utility depends only on state of parents of value

node
– generally: only one value node in a decision network

• Utility depends only on disease and drug

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

8

Decision Networks: Assumptions
• Decision nodes are totally ordered

– decision variables D1, D2, …, Dn
– decisions are made in sequence
– e.g., BloodTst (yes,no) decided before Drug

(fd,md,no)
• No-forgetting property

– any information available when decision Di is made
is available when decision Dj is made (for i < j)

– thus all parents of Di are parents of Dj

Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
no-forgetting
property

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

9

Policies
• Let Par(Di) be the parents of decision node Di

– Dom(Par(Di)) is the set of assignments to parents
• A policy δ is a set of mappings δi, one for each

decision node Di
– δi :Dom(Par(Di)) →Dom(Di)
– δi associates a decision with each parent asst for Di

• For example, a policy for BT might be:
– δBT (c,f) = bt
– δBT (c,~f) = ~bt
– δBT (~c,f) = bt
– δBT (~c,~f) = ~bt

Chills

Fever
BloodTst

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

10

Value of a Policy
• Value of a policy δ is the expected utility given

that decision nodes are executed according to
δ

• Given asst x to the set X of all chance
variables, let δ(x) denote the asst to decision
variables dictated by δ
– e.g., asst to D1 determined by it’s parents’ asst in x
– e.g., asst to D2 determined by it’s parents’ asst in x

along with whatever was assigned to D1
– etc.

• Value of δ :
EU(δ) = ΣX P(X, δ(X)) U(X, δ(X))

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

11

Optimal Policies

• An optimal policy is a policy δ* such that
EU(δ*) ≥ EU(δ) for all policies δ

• We can use the dynamic programming
principle yet again to avoid enumerating
all policies

• We can also use the structure of the
decision network to use variable
elimination to aid in the computation

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

12

Computing the Best Policy
• We can work backwards as follows
• First compute optimal policy for Drug (last

dec’n)
– for each asst to parents (C,F,BT,TR) and for each

decision value (D = md,fd,none), compute the
expected value of choosing that value of D

– set policy choice for each
value of parents to be
the value of D that
has max value

– eg: δD(c,f,bt,pos) = md Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

3

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

13

Computing the Best Policy
• Next compute policy for BT given policy

δD(C,F,BT,TR) just determined for Drug
– since δD(C,F,BT,TR) is fixed, we can treat

Drug as a normal random variable with
deterministic probabilities

– i.e., for any instantiation of parents, value
of Drug is fixed by policy δD

– this means we can solve for optimal policy
for BT just as before

– only uninstantiated vars are random vars
(once we fix its parents)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

14

Computing the Best Policy
• How do we compute these expected values?

– suppose we have asst <c,f,bt,pos> to parents of Drug
– we want to compute EU of deciding to set Drug = md
– we can run variable elimination!

• Treat C,F,BT,TR,Dr as evidence
– this reduces factors (e.g., U restricted to bt,md: depends on

Dis)
– eliminate remaining variables (e.g., only Disease left)
– left with factor: EU(md|c,f,bt,pos) =
ΣDis P(Dis|c,f,bt,pos,md) U(Dis,bt,md)

• We now know EU of doing
Dr=md when c,f,bt,pos true

• Can do same for fd,no to
decide which is best

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

15

Computing Expected Utilities
• The preceding illustrates a general

phenomenon
– computing expected utilities with BNs is

quite easy
– utility nodes are just factors that can be

dealt with using variable elimination
EU = ΣA,B,C P(A,B,C) U(B,C)

= ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)
• Just eliminate variables
in the usual way

U

C

B

A

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

16

Optimizing Policies: Key Points
• If a decision node D has no decisions that

follow it, we can find its policy by
instantiating each of its parents and
computing the expected utility of each
decision for each parent instantiation
– no-forgetting means that all other decisions are

instantiated (they must be parents)
– its easy to compute the expected utility using VE
– the number of computations is quite large: we run

expected utility calculations (VE) for each parent
instantiation together with each possible decision
D might allow

– policy: choose max decision for each parent
instant’n

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

17

Optimizing Policies: Key Points
• When a decision D node is optimized, it can be

treated as a random variable
– for each instantiation of its parents we now know

what value the decision should take
– just treat policy as a new CPT: for a given parent

instantiation x, D gets δ(x) with probability 1 (all
other decisions get probability zero)

• If we optimize from last decision to first, at
each point we can optimize a specific decision
by (a bunch of) simple VE calculations
– it’s successor decisions (optimized) are just normal

nodes in the BNs (with CPTs)
CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

18

Decision Network Notes
• Decision networks commonly used by decision

analysts to help structure decision problems
• Much work put into computationally effective

techniques to solve these
– common trick: replace the decision nodes with random

variables at outset and solve a plain Bayes net (a
subtle but useful transformation)

• Complexity much greater than BN inference
– we need to solve a number of BN inference problems
– one BN problem for each setting of decision node

parents and decision node value

4

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

19

A Decision Net Example
• Setting: you want to buy a used car, but there’s

a good chance it is a “lemon” (i.e., prone to
breakdown). Before deciding to buy it, you can
take it to a mechanic for inspection. S/he will
give you a report on the car, labeling it either
“good” or “bad”. A good report is positively
correlated with the car being sound, while a bad
report is positively correlated with the car
being a lemon.

• The report costs $50 however. So you could
risk it, and buy the car without the report.

• Owning a sound car is better than having no car,
which is better than owning a lemon.

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

20

Car Buyer’s Network

Lemon

Report

Inspect Buy

U

l ~l
0.5 0.5

g b n

l i 0.2 0.8 0
~l i 0.9 0.1 0
l ~i 0 0 1
~l ~i 0 0 1

Rep: good,bad,none

b l -600
b ~l 1000

~b l -300
~b~l -300

Utility

-50 if
inspect

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

21

Evaluate Last Decision: Buy (1)
• EU(B|I,R) = ΣL P(L|I,R,B) U(L,I,B)
• I = i, R = g:

– EU(buy) = P(l|i,g,buy) U(l,i,buy) + P(~l|i,g,buy)
U(~l,i,buy)

= .18*-650 + .82*950 = 662

– EU(~buy) = P(l|i,g,~buy) U(l,i,~buy) +
P(~l|i,g,~buy) U(~l,i,~buy)

= -300 - 50 = -350 (-300 indep. of lemon)

– So optimal δBuy (i,g) = buy

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

22

Evaluate Last Decision: Buy (2)

• I = i, R = b:
– EU(buy) = P(l|i,b,buy) U(l,i,buy) + P(~l|i,b,buy)

U(~l,i,buy)
= .89*-650 + .11*950 = -474

– EU(~buy) = P(l|i,b,~buy) U(l,i,~buy) +
P(~l|i, b,~buy) U(~l,i,~buy)

= -300 - 50 = -350 (-300 indep. of lemon)

– So optimal δBuy (i,b) = ~buy

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

23

Evaluate Last Decision: Buy (3)
• I = ~i, R = n

– EU(buy) = P(l|~i,n,buy) U(l,~i,buy) + P(~l|~i,n,buy)
U(~l,~i,buy)

= .5*-600 + .5*1000 = 200
– EU(~buy) = P(l|~i,n,~buy) U(l,~i,~buy) +

P(~l|~i,n,~buy) U(~l,~i,~buy)
= -300 (-300 indep. of lemon)

– So optimal δBuy (~i,n) = buy
• So optimal policy for Buy is:

– δBuy (i,g) = buy ; δBuy (i,b) = ~buy ; δBuy (~i,n) = buy
• Note: we don’t bother computing policy for

(i,~n), (~i, g), or (~i, b), since these occur with
probability 0

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

24

Using Variable Elimination

Restriction: replace f2(L,I,R) by f4(L) = f2(L,i,g)
replace f3(L,I,B) by f5(L,B) = f2(L,i,B)

Step 1: Add f6(B)= ΣL f1(L) f4(L) f5(L,B)
Remove: f1(L), f4(L), f5(L,B)

Last factor: f6(B) is the unscaled expected utility of buy
and ~buy. Select action with highest (unscaled)
expected utility.

Repeat for EU(B|i,b), EU(B|~i,n)

Factors: f1(L) f2(L,I,R)
f3(L,I,B)

Query: EU(B)?
Evidence: I = i, R = g
Elim. Order: L

L
f1(L)

f3(L,I,B)

f2(L,I,R)R

I B

U

5

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

25

Alternatively
• N.B.: variable elimination for decision networks

computes unscaled expected utility…
• Can still pick best action, since utility scale is

not important (relative magnitude is what
matters)

• If we want exact expected utility:
– Let X = parents(U)
– EU(dec|evidence) = ΣX Pr(X|dec,evidence) U(X)
– Compute Pr(X|dec,evidence) by variable elimination
– Multiply Pr(X|dec,evidence) by U(X)
– Summout X

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

26

Evaluate First Decision: Inspect
• EU(I) = ΣL,R P(L,R|i) U(L,i,δBuy (I,R))

– where P(R,L|i) = P(R|L,i)P(L|i)
– EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350)

= 187.5
– EU(~i) = P(n,l|~i) U(l,~i,buy) + P(n,~l|~i) U(~l,~i,buy)

= .5*-600 + .5*1000 = 200
– So optimal δInspect () = ~inspect

-300 - 50 = -350~buy0.05b,~l
1000 - 50 = 950buy0.45g,~l
-300 - 50 = -350~buy0.4b,l
-600 - 50 = -650buy0.1g,l
U(L, i, δBuy)δBuyP(R,L | i)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

27

Using Variable Elimination

N.B. f3(R,I,B) = δB(R,I)
Step 1: Add f5(R,I,B)= ΣL f1(L) f2(L,I,R) f4(L,I,B)

Remove: f1(L) f2(L,I,R) f4(L,I,B)
Step 2: Add f6(I,B)= ΣR f3(R,I,B) f5(R,I,B)

Remove: f3(R,I,B) f5(R,I,B)
Step 3: Add f7(I)= ΣB f6(I,B)

Remove: f6(I,B)
Last factor: f7(I) is the expected utility of inspect and ~inspect.

Select action with highest expected utility.

Factors: f1(L) f2(L,I,R)
f3(R,I,B) f4(L,I,B)

Query: EU(I)?
Evidence: none
Elim. Order: L, R, B

L
f1(L)

f4(L,I,B)

f2(L,I,R)R

I B

U

f3(R,I,B)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

28

Value of Information
• So optimal policy is: don’t inspect, buy the car

– EU = 200
– Notice that the EU of inspecting the car, then

buying it iff you get a good report, is 237.5 less the
cost of the inspection (50). So inspection not worth
the improvement in EU.

– Suppose inspection cost $25: would it be worth it?
• EU = 237.5 – 25 = 212.5 > EU(~i)

– The expected value of information associated with
inspection is 37.5 (it improves expected utility by
this amount ignoring cost of inspection). How? Gives
opportunity to change decision (~buy if bad).

– You should be willing to pay up to $37.5 for the
report

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

29

Next Class
• Reasoning under uncertainty over time

– Inference in temporal models
– Hidden Markov Models
– Dynamic Bayesian Networks

• Russell and Norvig: Chapter 15

