Lecture 11

June 6, 2006
CS 486/686

Outline

- Decision Networks
- Aka Influence diagrams

* Value of information
+ Russell and Norvig: Sect 16.5-16.6

(C$486/686 Lecture Sides (c) 2006 C. Boutier, P. Poupart & K. Larson

Decision Networks

- Decision networks (also known as
influence diagrams) provide a way of
representing sequential decision
problems
- basic idea: represent the variables in the

problem as you would in a BN
- add decision variables - variables that you
“control”

- add utility variables - how good different
states are

Sample Decision Network

Decision Networks: Chance Nodes

+ Chance nodes
- random variables, denoted by circles
- as ina BN, probabilistic dependence on

parents

Pr(flflu) = .5 Pr(pos|flubt) = .2
Pr(flmal) = .3 Pr(neg|flu,bt) = .8
Pr(fInone) = .05 Pr(null|flu,bt) = 0

Pr(pos|mal bt) = .9

Pr(neg|mal,bt) = .1
@) Pr(null|mal bt) = 0
Pr(pos|no bt) = .1
Pr(neg|no,bt) =.9

Pr(nulllno,bt) = 0

P ~bt)=0
Pr(flu) = 3 BloodTst P:Eﬁ;;'@;b?) o
Pr(mal) = .1 !

Pr(none) = 6 Pr(null|D,~bt) = 1

5

Decision Networks: Decision Nodes

- Decision nodes

- variables decision maker sets, denoted by
squares
- parents reflect /nformation available at time
decision is to be made
* In example decision node: the actual values
of Ch and Fev will be observed before the
decision to take test must be made

- agent can make different decisions for each
instantiation of parents (i.e., policies)

BloodTst| BT e {bt, ~bt}
:

Decision Networks: Value Node
* Value node
- specifies utility of a state, denoted by a diamond

- utility depends only on state of parents of value
node

- generally: only one value node in a decision network
+ Utility depends only on disease and drug

U(fludrug, flu) = 20

U(fludrug, mal) = -300

_ Drug U(fludrug, none) = -5

U(maldrug, flu) = -30

U(maldrug, mal) = 10
. U(maldrug, none) = -20

Disease U(no drug, flu) = -10

\ U(no drug, mal) = -285
<L> U(no drug, none) = 30

7

C$456/686 Lecture Sides (c) 2006 C. Boutilier, P, Poupart & K. Larson

Decision Networks: Assumptions
+ Decision nodes are totally ordered
- decision variables D1, D2, ..., Dn
- decisions are made in sequence

- efg BIoode‘r (yes.no) decided before Drug
d,md,no)

« No-forgetting property

- any information available when decision D; is made
is available when decision Dj is made (for i< j)

- thus all parents of Dj are parents of D

Dashed arcs
ensure the
]BIoodeT|—>| Drug | ro-forgetting
.. property

(€5486/686 Lecture Sides (c) 2006 C. Boutir, P. Poupart & K. L

Policies

+ Let Par(D;)be the parents of decision node D;
- Dom(Par(D;))is the set of assignments to parents
+ A policy dis a set of mappings J;, one for each
decision node D;
- O; :Dom(Par(D,;)) — Dom(D;)
- Ojassociates a decision with each parent asst for D;
+ For example, a policy for BT might be:

- Gar(c)= bt
- Oar(c~f) = ~bt
- Sar(~cf) = bt BloodTst
- Ga7 () = bt

Value of a Policy

Value of a policy &is the expected utility given
that decision nodes are executed according to
o
+ Given asst x to the set X of all chance
variables, let &x) denote the asst to decision
variables dictated by &
- e.g., asst to Oy determined by it's parents’ asst in x

- e.g., asst to Dz determined by it's parents’ asst in x
along with whatever was assigned to Oy
- etc.

Value of o:
EU(9) = Zx P(X, aX)) U(X, &X))

C5486/686 Lecture Sides (c) 2006 C. Boutiir, P. Py

10

part & K. L

Optimal Policies

* An optimal policy is a policy & such that
EU(0”) 2 EU(9) for all policies 0

+ We can use the dynamic programming
principle yet again to avoid enumerating
all policies

+ We can also use the structure of the
decision network to use variable
elimination to aid in the computation

"

Computing the Best Policy

+ We can work backwards as follows
+ First compute optimal policy for Drug (last

dec'n)

- for each asst to parents (C,F,BT,TR) and for each
decision value (D = md,fd,none), compute the
expected value of choosing that value of D

- set policy choice for each

value of parents to be
the value of D that
has max value

Computing the Best Policy

* Next compute policy for BT given policy

Op(C,F,BT,TR) just determined for Drug

- since Op(C.F,BT,TR)is fixed, we can treat
Drug as a hormal random variable with
deterministic probabilities

- i.e., for any instantiation of parents, value
of Drug is fixed by policy dp

- this means we can solve for optimal policy
for BT just as before

- only uninstantiated vars are random vars
(once we fix /ts parents)

C$456/686 Lecture Sides (c) 2006 C. Boutilier, P, Poupart & K. Larson

13

+ We now know EU of doing

+ Can do same for fd,no to

Computing the Best Policy

* How do we compute these expected values?
- suppose we have asst <, f,bt pos> to parents of Drug
- we want to compute EU of deciding to set Drug = md
- we can run variable elimination!

+ Treat CF,BT,TR,Dr as evidence

- this reduces factors (e.g., Urestricted to bt,mdt depends on
Dis)

- eliminate remaining variables (e.g., only Disease left)

- left with factor: EU(md|c,f,bt,pos) =
Zpis P(Dislc,f,bt,pos, md) U(Dis,bt, md)

Dr=mdwhen c,f,bt pos true

decide which is best

Computing Expected Utilities
* The preceding illustrates a general
phenomenon

- computing expected utilities with BNs is
quite easy

- utility nodes are just factors that can be
dealt with using variable elimination

EU = ZA,B,C P(A,B,C) U(B,C) @
= Zapc P(CIB) P(B|A) P(A) U(B.C) \
« Just eliminate variables [

in the usual way

(©5486/686 Lecture Siides (c) 2006 C. Bouiler, P. Poupart & K. Lars

15

O

Optimizing Policies: Key Points

+ If a decision node D has no decisions that
follow it, we can find its policy by
instantiating each of its parents and
computing T?m expected utility of each
decision for each parent instantiation
- no-forgetting means that all other decisions are

instantiated (they must be parents)
- its easy to compute the expected utility using VE
- the number of computations is quite large: we run
expected utility calculations (V%) for each parent
instantiation together with each possible decision
D might allow

- policy: choose max decision for each parent
instant'n

C5486/686 Lecture Sides (c) 2006 C. Boutiir, P. Poupart & K. L

Optimizing Policies: Key Points

*+ When a decision D node is optimized, it can be
treated as a random variable
- for each instantiation of its parents we now know
what value the decision should take
- just freat policy as a hew CPT: for a given parent
instantiation x, D gets &(x) with probability 1 (all
other decisions get probability zero)
+ If we optimize from last decision to first, at
each point we can optimize a specific decision
by (a bunch of) simple VE calculations

- it's successor decisions (optimized) are just normal
nodes in the BNs (with CPTs)

5486/686 Lecture Slides (¢ 2006 C. Boutilier, P. Poupart & K. Larson

17

Decision Network Notes

+ Decision networks commonly used by decision

analysts to help structure decision problems

*+ Much work put into computationally effective

techniques to solve these

- common trick: replace the decision nodes with random
variables at outset and solve a plain Bayes net (a
subtle but useful transformation)

+ Complexity much greater than BN inference

- we need to solve a number of BN inference problems

- one BN problem for each setting of decision node
parents and decision hode value

A Decision Net Example

+ Setting: you want to buy a used car, but there's
a good chance it is a “lemon” (i.e., prone to
breakdown). Before deciding to buy it, you can
take it to a mechanic for inspection. S/he will
give you a report on the car, labeling it either
"good" or "bad". A good report is positively
correlated with the car being sound, while a bad
report is positively correlated with the car
being a lemon.

- The report costs $50 however. So you could
risk it, and buy the car without the report.

+ Owning a sound car is better than having no car,
which is better than owning a lemon.

16/686 Lecture Siides (¢ 2006 C. Boutilier, P. Poupart & K. L

19

Car Buyer's Network
Rep: good,bad,none
n

b—\b—‘oo

2
I~ Report r,lv: %9 o
0505 /..\ [0 0
Utility
b || -600
&5 55
~b~l | -300 inspect

20

Evaluate Last Decision: Buy (1)

- EUBIIR)=Z P(LITR,B)U(LIB)
+I=iR=g
- EU(buy) = P(l|i,g,buy) U(l,i,buy) + P(~I|i,g,buy)
U(~l,i,buy)
= 18%-650 + 82*950 = 662
- EU(~buy) = P(l]i,g,~buy) U(l,i,~buy) +
P(~Ili,g,~buy) U(~l,i,~buy)
=-300-50=-350 (-300 indep. of lemon)
- So optimal gy (7,9) = buy

21

Evaluate Last Decision: Buy (2)

«I=i,R=b:
- EU(buy) = P(Ili,b,buy) U(l,i,buy) + P(~I|i,b buy)
U(~l,i,buy)
=.89*-650 + .11*950 = -474
- EU(~buy) = P(l]i,b,~buy) U(l,i,~buy) +
P(~Ili, b,~buy) U(~l,i,~buy)
=-300 - 50 =-350 (-300 indep. of lemon)
- So optimal gy, (7,6) = ~buy

22

Evaluate Last Decision: Buy (3)

=~i,R=n
- EU(buy) = P(l|~i,n,buy) U(l,~i buy) + P(~I|~i,n,buy)
U(~l,~i,buy)
= 5*-600 + 5*1000 = 200
- EU(~buy) = P(l|~i,n,~buy) U(l,~i,~buy) +
P(~I|~i,n,~buy) U(~l,~i,~buy)
=-300 (-300 indep. of lemon)
- So optimal dgyy (~i,n) = buy
+ So optimal policy for Buy is:
~ Oguy (i,g) = buy ; dgyy (i,b) = ~buy ; Spyy (~i,n) = buy
* Note: we don't bother computing policy for
(i,~n), (~i, g), or (~i, b), since these occur with
probability O

23

86 Lecture Stdes (c) 2006 C. Boutiier, P. Poupart & K. Larson.

Using Variable Elimination
FEEHOR]| gy @

Query: EU(B)? ’ B
Evidence:T=i,R=g \

Elim. Order: | <L>f3(L,I,B)

Restriction: replace f2(L,I,R) by fa(L) = f2(L.i.g)
replace f3(L,I,B) by f5(L,B) = fa(L.i,B)
Step 1: Add fe(B)= 2| f1(L) fa(L) f5(L,B)
Remove: f1(L), fa(L), f5(L.B)
Last factor: fe(B) is the unscaled expected u‘rili'gl) of buy

and ~buy. Select action with highest (unscale
expected utility.

Repeat for EU(B|i,b), EU(B|~i,n)

24

16/686 Lecture Slides (¢ 2006 C. Bouilier, P. Poupart & K. L

Alternatively

+ N.B.: variable elimination for decision networks
computes unscaled expected utility...

+ Can still pick best action, since utility scale is
not important (relative magnitude is what
matters)

+ If we want exact expected utility:

- Let X = parents(U)

- EU(dec|evidence) = Zx Pr(X|dec evidence) U(X)

- Compute Pr(X|dec evidence) by variable elimination
- Multiply Pr(X|dec evidence) by U(X)

- Summout X

25

C$456/686 Lecture Sides (c) 2006 C. Boutilier, P, Poupart & K. Larson

Evaluate First Decision: Inspect

+ BU(T) = Z_ g P(LRIi) U(L,i, 08y (Z.R)
- where P(R,L|i) = P(R|L,i)P(L|i)
- EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350)
-187.5
- EU(~i) = P(nl]~i) U(l,~i buy) + P(n,~I|~i) U(~l,~i,buy)
= .5*-600 + .5*1000 = 200
- So optimal Sznspect () = ~inspect

P(R:L | i) JBuy U(L,i, JBuy)
9l |01 buy |-600 - 50 = -650
b, 0.4 ~buy |-300 -50 =-350
g~ | 045 buy 1000 - 50 = 950
b,~l | 0.05 ~buy |-300 - 50 =-350 26

Using Variable Elimination

; R f2(L.IR)
PRI | TN
Query: EU(I)? \ E f3(R,I,B)

Evidence: none
Elim. Order: L,R, B

@n(L,I,B)
N.B. f3(R,I,B) = (R I)

Step 1: Add f5(R,I,B)= X fi(L) fa(L.IR) f4(L.I,B)
Remove: f1(L) f2(L.I.R) f4(L.I,B)

Step 2: Add fe(I,B)= 2 f3(R,I,B) f5(R,I,B)
Remove: f3(R,I,B) f5(R,I,B)

Step 3: Add f7(I)= Zg f6(I,B)
Remove: f4(I,B)

Last factor: f7(I) is the expected utility of inspect and ~inspect.
Select action with highest expected utility.

27

©5486/686 Lecture Sides (¢) 2006 C. Boutilier, P. Poupart & K. Larson

Value of Information

+ So optimal policy is: don't inspect, buy the car

- EU =200

- Notice that the EU of inspecting the car, then
buying it iff you get a good report, is 237.5 less the
cost of the inspection (50). So inspection not worth
the improvement in EU.

- Suppose inspection cost $25: would it be worth it?

- EU=2375-25= 2125 > EU(~i)

- The expected value of information associated with
inspection is 37.5 (it improves expected utility by
this amount ignoring cost of inspection). How? Gives
opportunity to change decision (~buy if bad).

- You should be willing to pay up to $37.5 for the
report

28

Next Class

* Reasoning under uncertainty over time
- Inference in temporal models
- Hidden Markov Models
- Dynamic Bayesian Networks

* Russell and Norvig: Chapter 15

29

