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Outline

• Decision Networks
– Aka Influence diagrams

• Value of information
• Russell and Norvig: Sect 16.5-16.6
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Decision Networks
• Decision networks (also known as 

influence diagrams) provide a way of 
representing sequential decision 
problems
– basic idea: represent the variables in the 

problem as you would in a BN
– add decision variables – variables that you 

“control”
– add utility variables – how good different 

states are

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

4

Sample Decision Network

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional
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Decision Networks: Chance Nodes
• Chance nodes

– random variables, denoted by circles
– as in a BN, probabilistic dependence on 

parents

Disease

Fever

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt) = 0
Pr(neg|D,~bt) = 0
Pr(null|D,~bt) = 1
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Decision Networks: Decision Nodes
• Decision nodes

– variables decision maker sets, denoted by 
squares

– parents reflect information available at time 
decision is to be made

• In example decision node: the actual values 
of Ch and Fev will be observed before the 
decision to take test must be made
– agent can make different decisions for each 

instantiation of parents (i.e., policies)

Chills

Fever
BloodTst BT ∊ {bt, ~bt}



2

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

7

Decision Networks: Value Node
• Value node

– specifies utility of a state, denoted by a diamond
– utility depends only on state of parents of value 

node
– generally: only one value node in a decision network

• Utility depends only on disease and drug

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30
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Decision Networks: Assumptions
• Decision nodes are totally ordered

– decision variables D1, D2, …, Dn
– decisions are made in sequence
– e.g., BloodTst (yes,no) decided before Drug 

(fd,md,no)
• No-forgetting property

– any information available when decision Di is made 
is available when decision Dj is made (for i < j)

– thus all parents of Di are parents of Dj

Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
no-forgetting
property
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Policies
• Let Par(Di) be the parents of decision node Di

– Dom(Par(Di)) is the set of assignments to parents
• A policy δ is a set of mappings δi, one for each 

decision node Di
– δi :Dom(Par(Di)) →Dom(Di)
– δi associates a decision with each parent asst for Di

• For example, a policy for BT might be:
– δBT (c,f) = bt
– δBT (c,~f) = ~bt
– δBT (~c,f) = bt
– δBT (~c,~f) = ~bt

Chills

Fever
BloodTst
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Value of a Policy
• Value of a policy δ is the expected utility given 

that decision nodes are executed according to 
δ

• Given asst x to the set X of all chance 
variables, let δ(x) denote the asst to decision 
variables dictated by δ
– e.g., asst to D1 determined by it’s parents’ asst in x
– e.g., asst to D2 determined by it’s parents’ asst in x 

along with whatever was assigned to D1
– etc.

• Value of δ :
EU(δ) = ΣX P(X, δ(X)) U(X, δ(X))
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Optimal Policies

• An optimal policy is a policy δ* such that     
EU(δ*) ≥ EU(δ) for all policies δ

• We can use the dynamic programming 
principle yet again to avoid enumerating 
all policies

• We can also use the structure of the 
decision network to use variable 
elimination to aid in the computation
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Computing the Best Policy
• We can work backwards as follows
• First compute optimal policy for Drug (last 

dec’n)
– for each asst to parents (C,F,BT,TR) and for each 

decision value (D = md,fd,none), compute the 
expected value of choosing that value of D

– set policy choice for each
value of parents to be
the value of D that
has max value

– eg: δD(c,f,bt,pos) = md Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional



3

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

13

Computing the Best Policy
• Next compute policy for BT given policy 

δD(C,F,BT,TR) just determined for Drug
– since δD(C,F,BT,TR) is fixed, we can treat 

Drug as a normal random variable with 
deterministic probabilities

– i.e., for any instantiation of parents, value 
of Drug is fixed by policy δD

– this means we can solve for optimal policy 
for BT just as before 

– only uninstantiated vars are random vars
(once we fix its parents)
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Computing the Best Policy
• How do we compute these expected values?

– suppose we have asst <c,f,bt,pos> to parents of Drug
– we want to compute EU of deciding to set Drug = md
– we can run variable elimination!

• Treat C,F,BT,TR,Dr as evidence
– this reduces factors (e.g., U restricted to bt,md: depends on 

Dis)
– eliminate remaining variables (e.g., only Disease left)
– left with factor:    EU(md|c,f,bt,pos) = 
ΣDis P(Dis|c,f,bt,pos,md) U(Dis,bt,md)

• We now know EU of doing
Dr=md when c,f,bt,pos true

• Can do same for fd,no to 
decide which is best

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional
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Computing Expected Utilities
• The preceding illustrates a general 

phenomenon
– computing expected utilities with BNs is 

quite easy
– utility nodes are just factors that can be 

dealt with using variable elimination
EU = ΣA,B,C P(A,B,C) U(B,C)

= ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)
• Just eliminate variables
in the usual way

U

C

B

A
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Optimizing Policies: Key Points
• If a decision node D has no decisions that 

follow it, we can find its policy by 
instantiating each of its parents and 
computing the expected utility of each 
decision for each parent instantiation
– no-forgetting means that all other decisions are 

instantiated (they must be parents)
– its easy to compute the expected utility using VE
– the number of computations is quite large: we run 

expected utility calculations (VE) for each parent 
instantiation together with each possible decision 
D might allow

– policy: choose max decision for each parent 
instant’n
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Optimizing Policies: Key Points
• When a decision D node is optimized, it can be 

treated as a random variable
– for each instantiation of its parents we now know 

what value the decision should take
– just treat policy as a new CPT: for a given parent 

instantiation x, D gets δ(x) with probability 1 (all 
other decisions get probability zero)

• If we optimize from last decision to first, at 
each point we can optimize a specific decision 
by (a bunch of) simple VE calculations
– it’s successor decisions (optimized) are just normal 

nodes in the BNs (with CPTs)
CS486/686 Lecture Slides (c) 2006 C. Boutilier, P. Poupart & K. Larson

18

Decision Network Notes
• Decision networks commonly used by decision 

analysts to help structure decision problems
• Much work put into computationally effective 

techniques to solve these
– common trick: replace the decision nodes with random 

variables at outset and solve a plain Bayes net (a 
subtle but useful transformation)

• Complexity much greater than BN inference
– we need to solve a number of BN inference problems
– one BN problem for each setting of decision node 

parents and decision node value
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A Decision Net Example
• Setting: you want to buy a used car, but there’s 

a good chance it is a “lemon” (i.e., prone to 
breakdown). Before deciding to buy it, you can 
take it to a mechanic for inspection. S/he will 
give you a report on the car, labeling it either 
“good” or “bad”. A good report is positively 
correlated with the car being sound, while a bad 
report is positively correlated with the car 
being a lemon.

• The report costs $50 however. So you could 
risk it, and buy the car without the report.

• Owning a sound car is better than having no car, 
which is better than owning a lemon.
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Car Buyer’s Network

Lemon

Report

Inspect Buy

U

l     ~l
0.5 0.5

g      b     n

l  i   0.2   0.8   0
~l i   0.9   0.1    0
l ~i    0      0     1
~l ~i  0      0     1

Rep: good,bad,none

b   l   -600
b ~l   1000

~b l    -300
~b~l -300

Utility

-50 if
inspect
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Evaluate Last Decision: Buy (1)
• EU(B|I,R) = ΣL P(L|I,R,B) U(L,I,B)
• I = i, R = g:

– EU(buy) = P(l|i,g,buy) U(l,i,buy) + P(~l|i,g,buy) 
U(~l,i,buy)

= .18*-650 + .82*950  = 662

– EU(~buy) = P(l|i,g,~buy) U(l,i,~buy) + 
P(~l|i,g,~buy) U(~l,i,~buy)

= -300 - 50 = -350   (-300 indep. of lemon)

– So optimal δBuy (i,g) = buy
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Evaluate Last Decision: Buy (2)

• I = i, R = b:
– EU(buy) = P(l|i,b,buy) U(l,i,buy) + P(~l|i,b,buy) 

U(~l,i,buy)
= .89*-650 + .11*950  = -474

– EU(~buy) = P(l|i,b,~buy) U(l,i,~buy) + 
P(~l|i, b,~buy) U(~l,i,~buy)

= -300 - 50 = -350   (-300 indep. of lemon)

– So optimal δBuy (i,b) = ~buy
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Evaluate Last Decision: Buy (3)
• I = ~i, R = n

– EU(buy) = P(l|~i,n,buy) U(l,~i,buy) + P(~l|~i,n,buy) 
U(~l,~i,buy)

= .5*-600 + .5*1000  = 200
– EU(~buy) = P(l|~i,n,~buy) U(l,~i,~buy) + 

P(~l|~i,n,~buy) U(~l,~i,~buy)
= -300   (-300 indep. of lemon)

– So optimal δBuy (~i,n) = buy
• So optimal policy for Buy is:

– δBuy (i,g) = buy ; δBuy (i,b) = ~buy ; δBuy (~i,n) = buy
• Note: we don’t bother computing policy for 

(i,~n), (~i, g), or (~i, b), since these occur with 
probability 0
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Using Variable Elimination

Restriction: replace f2(L,I,R) by f4(L) = f2(L,i,g) 
replace f3(L,I,B) by f5(L,B) = f2(L,i,B)

Step 1: Add f6(B)= ΣL f1(L) f4(L) f5(L,B)
Remove: f1(L), f4(L), f5(L,B)

Last factor: f6(B) is the unscaled expected utility of buy 
and ~buy.  Select action with highest (unscaled) 
expected utility.

Repeat for EU(B|i,b), EU(B|~i,n)

Factors: f1(L) f2(L,I,R) 
f3(L,I,B) 

Query: EU(B)?  
Evidence: I = i, R = g
Elim. Order: L

L
f1(L)

f3(L,I,B)

f2(L,I,R)R

I B

U
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Alternatively
• N.B.: variable elimination for decision networks 

computes unscaled expected utility…
• Can still pick best action, since utility scale is 

not important (relative magnitude is what 
matters)

• If we want exact expected utility:
– Let X = parents(U)
– EU(dec|evidence) = ΣX Pr(X|dec,evidence) U(X)
– Compute Pr(X|dec,evidence) by variable elimination
– Multiply Pr(X|dec,evidence) by U(X)
– Summout X
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Evaluate First Decision: Inspect
• EU(I) = ΣL,R P(L,R|i) U(L,i,δBuy (I,R))

– where P(R,L|i) = P(R|L,i)P(L|i)
– EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350)

= 187.5
– EU(~i) = P(n,l|~i) U(l,~i,buy) + P(n,~l|~i) U(~l,~i,buy)

= .5*-600 + .5*1000 = 200
– So optimal δInspect () = ~inspect

-300 - 50 = -350~buy0.05b,~l
1000 - 50 = 950buy0.45g,~l
-300 - 50 = -350~buy0.4b,l
-600 - 50 = -650buy0.1g,l
U( L, i, δBuy )δBuyP(R,L | i)
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Using Variable Elimination

N.B. f3(R,I,B) = δB(R,I)
Step 1: Add f5(R,I,B)= ΣL f1(L) f2(L,I,R) f4(L,I,B)

Remove: f1(L) f2(L,I,R) f4(L,I,B)
Step 2: Add f6(I,B)= ΣR f3(R,I,B) f5(R,I,B)

Remove: f3(R,I,B) f5(R,I,B)
Step 3: Add f7(I)= ΣB f6(I,B)

Remove: f6(I,B)
Last factor: f7(I) is the expected utility of inspect and ~inspect.  

Select action with highest expected utility.

Factors: f1(L) f2(L,I,R) 
f3(R,I,B) f4(L,I,B) 

Query: EU(I)?  
Evidence: none
Elim. Order: L, R, B

L
f1(L)

f4(L,I,B)

f2(L,I,R)R

I B

U

f3(R,I,B)
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Value of Information
• So optimal policy is: don’t inspect, buy the car

– EU = 200
– Notice that the EU of inspecting the car, then 

buying it iff you get a good report, is 237.5 less the 
cost of the inspection (50). So inspection not worth 
the improvement in EU.

– Suppose inspection cost $25: would it be worth it?
• EU = 237.5 – 25 = 212.5 > EU(~i)

– The expected value of information associated with 
inspection is 37.5 (it improves expected utility by 
this amount ignoring cost of inspection). How? Gives 
opportunity to change decision (~buy if bad).

– You should be willing to pay up to $37.5 for the 
report
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Next Class
• Reasoning under uncertainty over time

– Inference in temporal models
– Hidden Markov Models
– Dynamic Bayesian Networks

• Russell and Norvig: Chapter 15


