
1

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

1

Lecture 10

June 1, 2006
CS 486/686

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

2

Outline
• Decision making

– Utility Theory
– Decision Trees

• Chapter 16 in R&N
– Note: Some of the material we are

covering today is not in the textbook

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

3

Decision Making under Uncertainty
• I give robot a planning problem: I want

coffee
– but coffee maker is broken: robot reports

“No plan!”
• If I want more robust behavior – if I

want robot to know what to do if my
primary goal can’t be satisfied – I should
provide it with some indication of my
preferences over alternatives
– e.g., coffee better than tea, tea better than

water, water better than nothing, etc.

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

4

Decision Making under Uncertainty
• But it’s more complex:

– it could wait 45 minutes for coffee maker to
be fixed

– what’s better: tea now? coffee in 45
minutes?

– could express preferences for
<beverage,time> pairs

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

5

Preferences
• A preference ordering ≽ is a ranking of

all possible states of affairs (worlds) S
– these could be outcomes of actions, truth

assts, states in a search problem, etc.
– s ≽ t: means that state s is at least as

good as t
– s ≻ t: means that state s is strictly

preferred to t
– s~t: means that the agent is indifferent

between states s and t

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

6

Preferences
• If an agent’s actions are deterministic

then we know what states will occur
• If an agent’s actions are not

deterministic then we represent this by
lotteries
– Probability distribution over outcomes
– Lottery L=[p1,s1;p2,s2;…;pn,sn]
– s1 occurs with prob p1, s2 occurs with prob

p2,…

2

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

7

Axioms
• Orderability: Given 2 states A and B

– (A ≻ B) v (B ≻ A) v (A ~ B)
• Transitivity: Given 3 states, A, B, and C

– (A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
• Continuity:

– A ≻ B ≻ C ⇒ ∃p [p,A;1-p,C] ~ B
• Substitutability:

– A~B [p,A;1-p,C] ~ [p,B;1-p,C]
• Monotonicity:

– A ≻ B ⇒ (p ≥ q ⇔ [p,A;1-p,B] ≽ [q,A;1-q,B]
• Decomposibility:

– [p,A;1-p,[q,B;1-q,C]] ~ [p,A;(1-p)q,B; (1-p)(1-q),C]
CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

8

Why Impose These Conditions?
• Structure of preference

ordering imposes certain
“rationality requirements” (it
is a weak ordering)

• E.g., why transitivity?
– Suppose you (strictly) prefer

coffee to tea, tea to OJ, OJ
to coffee

– If you prefer X to Y, you’ll
trade me Y plus $1 for X

– I can construct a “money pump”
and extract arbitrary amounts
of money from you

≻

≻

≻

Best

Worst

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

9

Decision Problems: Certainty
• A decision problem under certainty is:

– a set of decisions D
• e.g., paths in search graph, plans, actions, etc.

– a set of outcomes or states S
• e.g., states you could reach by executing a plan

– an outcome function f : D →S
• the outcome of any decision

– a preference ordering ≽ over S
• A solution to a decision problem is any

d*∊ D such that f(d*) ≽ f(d) for all d∊D

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

10

Computational Issues
• At some level, solution to a dec. prob. is trivial

– complexity lies in the fact that the decisions and
outcome function are rarely specified explicitly

– e.g., in planning or search problems, you construct the
set of decisions by constructing paths or exploring
search paths -- don’t know outcomes in advance!

• E.g., my robot domain
– We find a plan satisfying c, m, bc
– Can we stop searching?
– Must convince ourselves no better plan

exists (nothing can reach best)
– Generally requires searching entire

plan space, unless we have some clever
tricks

c, m, ~bc
≻

c, m, bc
≻

c, ~m, ~bc
≻

c, ~m, bc

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

11

Decision Making under Uncertainty

• Suppose actions don’t have deterministic outcomes
– e.g., when robot pours coffee, it spills 20% of time, making a

mess
– preferences: c, ~mess ≻ ~c,~mess ≻ ~c, mess

• What should robot do?
– decision getcoffee leads to a good outcome and a bad outcome

with some probability
– decision donothing leads to a medium outcome for sure

• Should robot be optimistic? pessimistic?
• Really odds of success should influence decision

– but how?

getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

12

Utilities
• Rather than just ranking outcomes, we must

quantify our degree of preference
– e.g., how much more important is c than ~mess

• A utility function U:S →ℝ associates a real-
valued utility with each outcome.
– U(s) measures your degree of preference for s

• Note: U induces a preference ordering ≽U
over S defined as: s ≽U t iff U(s) ≥ U(t)
– obviously ≽U will be reflexive, transitive,

connected

3

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

13

Expected Utility
• Under conditions of uncertainty, each

decision d induces a distribution Prd over
possible outcomes
– Prd(s) is probability of outcome s under

decision d

• The expected utility of decision d is
defined

∑
∈

=
Ss

d sUsdEU)()(Pr)(

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

14

Expected Utility

If U(c,~ms) = 10, U(~c,~ms) = 5, U(~c,ms) = 0,
then EU(getcoffee) = (0.8)(10)+(0.2)(0)=8
and EU(donothing) = 5

If U(c,~ms) = 10, U(~c,~ms) = 9, U(~c,ms) = 0,
then EU(getcoffee) = (0.8)(10)+(0.2)(0)=8
and EU(donothing) = 9

getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess

When robot pours coffee, it spills 20% of time, making
a mess

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

15

The MEU Principle
• The principle of maximum expected

utility (MEU) states that the optimal
decision under conditions of uncertainty
is that with the greatest expected
utility.

• In our example
– if my utility function is the first one, my

robot should get coffee
– if your utility function is the second one,

your robot should do nothing

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

16

Decision Problems: Uncertainty
• A decision problem under uncertainty is:

– a set of decisions D
– a set of outcomes or states S
– an outcome function Pr : D →Δ(S)

• Δ(S) is the set of distributions over S (e.g., Prd)

– a utility function U over S
• A solution to a decision problem under

uncertainty is any d*∊ D such that EU(d*) ≽
EU(d) for all d∊D

• Again, for single-shot problems, this is trivial

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

17

Expected Utility: Notes
• Note that this viewpoint accounts for

both:
– uncertainty in action outcomes
– uncertainty in state of knowledge
– any combination of the two

s0

s1

s2a
0.8

0.2

s3

s4

b 0.3

0.7

0.7 s1

0.3 s2

0.7 t1

0.3 t2

0.7 w1

0.3 w2

a

b

Stochastic actions Uncertain knowledge

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

18

Expected Utility: Notes
• Why MEU? Where do utilities come from?

– underlying foundations of utility theory tightly
couple utility with action/choice

– a utility function can be determined by asking
someone about their preferences for actions in
specific scenarios (or “lotteries” over outcomes)

• Utility functions needn’t be unique
– if I multiply U by a positive constant, all decisions

have same relative utility
– if I add a constant to U, same thing
– U is unique up to positive affine transformation

4

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

19

So What are the Complications?
• Outcome space is large

– like all of our problems, states spaces can be huge
– don’t want to spell out distributions like Prd explicitly
– Soln: Bayes nets (or related: influence diagrams)

• Decision space is large
– usually our decisions are not one-shot actions
– rather they involve sequential choices (like plans)
– if we treat each plan as a distinct decision, decision

space is too large to handle directly
– Soln: use dynamic programming methods to construct

optimal plans (actually generalizations of plans, called
policies… like in game trees)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

20

A Simple Example
• Suppose we have two actions: a, b
• We have time to execute two actions in sequence
• This means we can do either:

– [a,a], [a,b], [b,a], [b,b]
• Actions are stochastic: action a induces

distribution Pra(si | sj) over states
– e.g., Pra(s2 | s1) = .9 means prob. of moving to state s2

when a is performed at s1 is .9
– similar distribution for action b

• How good is a particular sequence of actions?

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

21

Distributions for Action Sequences

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

22

Distributions for Action Sequences

• Sequence [a,a] gives distribution over “final states”
– Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

• Similarly:
– [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = .03
– and similar distributions for sequences [b,a] and [b,b]

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

23

How Good is a Sequence?
• We associate utilities with the “final” outcomes

– how good is it to end up at s4, s5, s6, …
– note: we could assign utilities to the intermediate

states s2, s3, s12, and s13 also. We ignore this for
now. Technically, think if utility u(s4) as utility of
entire trajectory or sequence of states we pass
through.

• Now we have:
– EU(aa) = .45u(s4) + .45u(s5) + .02u(s8) + .08u(s9)
– EU(ab) = .54u(s6) + .36u(s7) + .07u(s10) + .03u(s11)
– etc…

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

24

Utilities for Action Sequences
s1

s13s12s3s2

a b

.9 .1 .2 .8

u(s4) u(s5)

.5 .5
u(s6)

.6 .4

a b

.2 .8 .7 .3

a b

.1 .9 .2 .8

a b

.2 .8
u(s21)

.7 .3

a b

etc….
Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)

5

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

25

Why Sequences might be bad

• Suppose we do a first; we could reach s2 or s3:
– At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + .4u(s7)
– At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11)

• After doing a first, we want to do a next if we reach s2,
but we want to do b second if we reach s3

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

26

Policies
• This suggests that we want to consider policies,

not sequences of actions (plans)
• We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

• Contrast this with four “plans”
– [a; a], [a; b], [b; a], [b; b]
– note: each plan corresponds to a policy, so we can only

gain by allowing decision maker to use policies

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

27

Evaluating Policies
• Number of plans (sequences) of length k

– exponential in k: |A|k if A is our action set
• Number of policies is even much larger

– if we have n=|A| actions and m=|O| outcomes per
action, then we have (nm)k policies

• Fortunately, dynamic programming can be used
– e.g., suppose EU(a) > EU(b) at s2
– never consider a policy that does anything else at s2

• How to do this?
– back values up the tree much like minimax search

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

28

Decision Trees
• Squares denote choice nodes

– these denote action choices by
decision maker (decision nodes)

• Circles denote chance nodes
– these denote uncertainty

regarding action effects
– “nature” will choose the child

with specified probability
• Terminal nodes labeled with

utilities
– denote utility of “trajectory”

(branch) to decision maker

s1a b

.9 .1 .2 .8

5 2 4 3

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

29

Evaluating Decision Trees
• Procedure is exactly like game trees, except…

– key difference: the “opponent” is “nature” who simply
chooses outcomes at chance nodes with specified
probability: so we average instead of minimizing

• Back values up the tree
– U(t) is defined for all terminals (part of input)
– U(n) = avg {U(c) : c a child of n} if n is a chance node
– U(n) = max {U(c) : c a child of n} if n is a choice node

• At any choice node (state), the decision maker
chooses action that leads to highest utility child

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

30

Evaluating a Decision Tree
• U(n3) = .9*5 + .1*2
• U(n4) = .8*3 + .2*4
• U(s2) = max{U(n3), U(n4)}

– decision a or b
(whichever is max)

• U(n1) = .3U(s2) + .7U(s3)
• U(s1) =

max{U(n1), U(n2)}
– decision: max of a, b

s2

n3
a b

.9 .1

5 2

n4
.8 .2

3 4

s1

n1
a b

.3 .7
n2

s3

6

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

31

Decision Tree Policies
• Note that we don’t

just compute values,
but policies for the
tree

• A policy assigns a
decision to each choice
node in tree

• Some policies can’t be distinguished in terms of
there expected values
– e.g., if policy chooses a at node s1, choice at s4 doesn’t

matter because it won’t be reached
– Two policies are implementationally indistinguishable if

they disagree only at unreachable decision nodes
• reachability is determined by policy themselves

s2

n3
a b

n4

s1

n1
a b

.3 .7
n2

s3 s4
a bab

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

32

Computational Issues
• Savings compared to explicit policy

evaluation is substantial
• Evaluate only O((nm)d) nodes in tree of

depth d
– total computational cost is thus O((nm)d)

• Note that there are also (nm)d policies and
– evaluating a single policy explicitly requires

substantial computation: O(md)
– total computation for explicitly evaluating

each policy would be O(ndm2d) !!!
• Tremendous value to dynamic programming

solution

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

33

Computational Issues
• Tree size: grows exponentially with depth
• Possible solutions:

– bounded lookahead with heuristics (like game trees)
– heuristic search procedures (like A*)

• Full observability: we must know the initial
state and outcome of each action

• Possible solutions:
– handcrafted decision trees for certain initial state

uncertainty
– more general policies based on observations

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

34

Other Issues

• Specification: suppose each state is an
assignment to variables; then
representing action probability
distributions is complex (and branching
factor could be immense)

• Possible solutions:
– represent distribution using Bayes nets
– solve problems using decision networks (or

influence diagrams)

CS486/686 Lecture Slides (c) 2006 C. Boutilier, P.Poupart & K. Larson

35

Next Class

• Decision networks
• Russell and Norvig Chapter 16

