
Assignment 3: Markov Decision Processes and Reinforcement
Learning

CS486/686 – Spring 2005

Out: June 21, 2005
Due: July 12, 2005

Be sure to include your name and student number with your assignment.

In this assignment you will implement value iteration and the temporal difference algorithm for the following
simple grid-world problem.
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S = start state

B = bad state

G = goal state

An agent starting in the start state S must reach the goal state G. At each time step, the agent can go up, down,
left or right. However, the agent’s movements are a bit noisy since it goes in the intended direction with a high
probability a and in one of the two lateral directions with a low probability b. For instance, when executing the action
up, the agent will indeed go up by one square with probability a, but may go left with probability b and right with
probability b (here a + b + b = 1). Similarly, when executing the action left, the agent will indeed go left with
probability a, but may go up with probability b and down with probability b, When an action takes the agent out of
the grid world, the agent simply bounces off the wall and stays in its current location. For example, when the agent
executes left in the start state it stays in the start state with probability a, it goes up with probability b and down
with probability b. Similarly, when the agent executes up from the start state, it goes up with probability a, right with
probability b and stays in the start state with probability b. Finally, when the agent is in the goal state, the task is over
and the agent transitions to a special end state with probability 1 (for any action). This end state is absorbing, meaning
that the agent cannot get out of the end state (i.e., it stays in the end state with probability 1 for every action).

The agent receives a reward of 100 when it reaches the goal state, -70 for the bad state and -1 for every other state,
except the end state, which has a 0 reward. The agent’s task is to find a policy to reach the goal state as quickly as
possible, while avoiding the bad state.

In case you are not certain about the transition and reward model, I’ve put on the course webpage a file (grid-
World.m) with a precise description (in Matlab) of the transition and reward models. Feel free to directly use this file
if you program your assignment in Matlab or to port it to your favorite language otherwise.
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1. [50 pts] Value iteration

Implement the value iteration algorithm (Figure 17.4 of Russell and Norvig) and compute the optimal policy.
Use a discount factor of 0.99 and run value iteration until the difference between two successive value functions
is at most 0.01 (i.e., |Vt+1(s) − Vt(s)| < 0.01 ∀s). Run value iteration once with a = 0.9, b = 0.05 and a
second time with a = 0.8, b = 0.1

What to hand in: hand in a printout of your code as well as the optimal policies and value functions found for
a = 0.9, b = 0.05 and for a = 0.8, b = 0.1. Discuss the differences found in the optimal policies and value
functions for the different combinations of a and b.

2. [50 pts] Temporal difference

Implement the active temporal difference algorithm (a.k.a Q-learning in Figure 21.8 of Russell and Norvig) with
a discount factor of 0.99. In contrast to question 1, the transition and reward models are unknown to the agent
for this question. Use the transition model with a = 0.9 and b = 0.05 and the reward model to simulate the
environment when the agent executes an action. Use a learning rate α = 1/N(s, a) where N(s, a) is the number
of times that action a was executed in state s. Always starting from the start state, run active temporal difference
for 10,000 episodes, where an episode consists of a sequence of moves from the start state until the end state is
reached. Try two different ε-greedy exploration functions by setting ε to 0.05 and then to 0.2. In other words,
when ε = 0.05, select the optimal action with probability 0.95 and a random action with probability 0.05.
Similarly, when ε = 0.2, select the optimal action with probability 0.8 and a random action with probability 0.2.

What to hand in: hand in a printout of your code as well as the optimal policies and value functions found for
ε = 0.05 and ε = 0.2. Discuss the impact of ε on the convergence of active temporal difference.
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