Uncertainty
 [RN2 Sec. 13.1-13.6]
 [RN3 Sec. 13.1-13.5]
 CS 486/686
 University of Waterloo
 Lecture 7: October 2, 2012

A Decision Making Scenario

- You are considering to buy a used car...
- Is it in good condition?
- How much are you willing to pay?
- Should you get it inspected by a mechanics?
- Should you buy the car?

In the next few lectures

- Probability theory
- Model uncertainty
- Utility theory
- Model preferences
- Decision theory
- Combine probability theory and utility theory

Introduction

- Logical reasoning breaks down when dealing with uncertainty
- Example: Diagnosis
- \forall p Symptom(p,Toothache) \Rightarrow Disease(p, Cavity)
- But not all people with toothaches have cavities...
- $\forall p$ Symptom(p, Toothache) \Rightarrow Disease (p, Cavity) v Disease(p,Gumdisease) v Disease(p, Hit in the Jaw) v...
- Can't enumerate all possible causes and not very informative
- $\forall p$ Disease (p, Cavity) \Rightarrow Symptom (p, Toothache)
- Does not work since not all cavities cause toothaches...

Introduction

- Logic fails because
- We are lazy
- Too much work to write down all antecedents and consequences
- Theoretical ignorance
- Sometimes there is just no complete theory
- Practical ignorance
- Even if we knew all the rules, we might be uncertain about a particular instance (not collected enough information yet)

Probabilities to the rescue

- For many years AI danced around the fact that the world is an uncertain place
- Then a few AI researchers decided to go back to the $18^{\text {th }}$ century
- Revolutionary
- Probabilities allow us to deal with uncertainty that comes from our laziness and ignorance
- Clear semantics
- Provide principled answers for
- Combining evidence, predictive and diagnostic reasoning, incorporation of new evidence
- Can be learned from data
- Intuitive for humans (?)

Discrete Random Variables

- Random variable A describes an outcome that cannot be determined in advance (i.e. roll of a dice)
- Discrete random variable means that its possible values come from a countable domain (sample space)
- E.G If X is the outcome of a dice throw, then $X \in\{1,2,3,4,5,6\}$
- Boolean random variable $A \in\{$ True, False $\}$
- A = The Canadian PM in 2040 will be female
- $A=$ You have Ebola
- $A=$ You wake up tomorrow with a headache

Events

- An event is a complete specification of the state of the world in which the agent is uncertain
- Subset of the sample space
- Example:
- Cavity=True \wedge Toothache=True
- Dice=2
- Events must be
- Mutually exclusive
- Exhaustive (at least one event must be true)

Probabilities

- We let $P(A)$ denote the "degree of belief" we have that statement A is true
- Also "fraction of worlds in which A is true"
- Philosophers like to discuss this (but we won't)
- Note:
- P(A) DOES NOT correspond to a degree of truth
- Example: Draw a card from a shuffled deck
- The card is of some type (e.g ace of spades)
- Before looking at it P (ace of spades) $=1 / 52$
- After looking at it P (ace of spades) $=1$ or 0

Visualizing A

Event space of all possible worlds.
It's area is 1
Worlds in which A is true

$$
P(A)=\text { Area of oval }
$$

The Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- These axioms limit the class of functions that can be considered as probability functions

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

The area of A can't be smaller than 0

A zero area would mean no world could ever have A as true

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

An area of
1 would mean all possible worlds have A as true

Interpreting the axioms

- $0 \leq P(A) \leq 1$
- $P($ True $)=1$
- $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Take the axioms seriously!

- There have been attempts to use different methodologies for uncertainty
- Fuzzy logic, three valued logic, DempsterShafer, non-monotonic reasoning,...
- But if you follow the axioms of probability then no one can take advantage of you :)

A Betting Game [di Finetti 1931]

- Propositions A and B
- Agent 1 announces its "degree of belief" in A and B ($P(A)$ and $P(B)$)
- Agent 2 chooses to bet for or against A and B at stakes that are consistent with $P(A)$ and $P(B)$
- If Agent 1 does not follow the axioms, it is guaranteed to lose money

Agent 1
Proposition Belief
$\begin{array}{ll}\text { A } & 0.4 \\ \text { B } & 0.3 \\ \text { AVB } & 0.8\end{array}$

Agent 2 Outcome for Agent 1 Bet Odds $\quad A \wedge B \quad A \wedge \sim B \sim A \wedge B \sim A \wedge \sim B$

A	4 to 6	-6	-6	4	4
B	3 to 7	-7	3	-7	3
$\sim(A V B) 2$ to 8	2	2	2	-8	
	-11	-1	-1	-1	

Theorems from the axioms

- Thm: $P(\sim A)=1-P(A)$
- Proof: $P(A \vee \sim A)=P(A)+P(\sim A)-P(A \wedge \sim A)$

$$
\begin{aligned}
& P(\text { True })=P(A)+P(\sim A)-P(\text { False }) \\
& 1=P(A)+P(\sim A)-0 \\
& P(\sim A)=1-P(A)
\end{aligned}
$$

Theorems from axioms

- Thm: $P(A)=P(A \wedge B)+P(A \wedge \sim B)$
- Proof: For you to do

Why? Because it is good for you

Multivalued Random Variables

- Assume domain of A (sample space) is $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$
- A can take on exactly one value out of this set
$-P\left(A=v_{i} \wedge A=v_{j}\right)=0$ if $i \neq j$
- $P\left(A=v_{1} \vee A=v_{2} \vee \ldots \vee A=v_{k}\right)=1$

Terminology

- Probability distribution:
- A specification of a probability for each event in our sample space
- Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
- Joint probability distribution
- Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables A and B:
- Joint distribution:
$-\operatorname{Pr}(A=a \wedge B=b)$ for all a, b
- Marginalisation (sumout rule):
$-\operatorname{Pr}(A=a)=\Sigma_{b} \operatorname{Pr}(A=a \wedge B=b)$
$-\operatorname{Pr}(B=b)=\Sigma_{a} \operatorname{Pr}(A=a \wedge B=b)$

Example: Joint Distribution

sunny			~sunny		
	cold	\sim cold		cold	\sim cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

$P($ headache^sunny^cold $)=0.108 P(\sim$ headache^sunny $\wedge \sim$ cold $)=0.064$
$P($ headacheVsunny $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$

$$
P(\text { headache })=0.108+0.012+0.072+0.008=0.2
$$

marginalization

Conditional Probability

- $P(A \mid B)$ fraction of worlds in which B is true that also have A true

Conditional Probability

$P(H \mid F)=$ Fraction of flu inflicted worlds in which you have a headache
=(\# worlds with flu and headache)/ (\# worlds with flu)
= (Area of "H and F" region)/ (Area of "F" region)
$=P(H \wedge F) / P(F)$
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

Conditional Probability

- Definition:
$-P(A \mid B)=P(A \wedge B) / P(B)$
- Chain rule:
$-P(A \wedge B)=P(A \mid B) P(B)$

Memorize these!

Inference

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"
$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

Is your reasoning correct?

Inference

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"

H="Have headache"
F="Have Flu"
$P(F \wedge H)=P(F) P(H \mid F)=1 / 80$
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$

Inference

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"

H="Have headache"
F="Have Flu"
$P(F \wedge H)=P(F) P(H \mid F)=1 / 80$
$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=P(F \wedge H) / P(H)=1 / 8$

Example: Joint Distribution

	sunny	\sim cold	\sim cold		cold
	\sim cold				
headache	0.108	0.012	headache	0.072	0.008
headache	0.016	0.064	\sim headache	0.144	0.576

$P($ headache \wedge cold \mid sunny $)=P$ (headache \wedge cold \wedge sunny) $/ P($ sunny $)$

$$
=0.108 /(0.108+0.012+0.016+0.064)
$$

$$
=0.54
$$

P (headache \wedge cold $\mid \sim$ sunny $)=P($ headache \wedge cold $\wedge \sim$ sunny $) / P(\sim$ sunny $)$

$$
=0.072 /(0.072+0.008+0.144+0.576)
$$

Bayes Rule

- Note
$-P(A \mid B) P(B)=P(A \wedge B)=P(B \wedge A)=P(B \mid A) P(A)$
- Bayes Rule
$-P(B \mid A)=[P(A \mid B) P(B)] / P(A)$

Memorize this!

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H, given evidence e

Likelihood

Posterior probability

More General Forms of Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)}
$$

$$
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
$$

$$
P\left(A=v_{i} \mid B\right)=\frac{P\left(B \mid A=v_{i}\right) P\left(A=v_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A=v_{k}\right) P\left(A=v_{k}\right)}
$$

Example

- A doctor knows that Asian flu causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10^{-7} chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

Example

- A doctor knows that Asian flu causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10^{-7} chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

$$
\begin{aligned}
\begin{array}{ll}
A=\text { Asian flu } \\
\mathrm{F}=\text { fever }
\end{array} & \begin{array}{l}
\text { Evidence }=\text { Symptom }(F) \\
\text { Hypothesis }=\text { Cause }(A)
\end{array} \\
P(A \mid F) & =\frac{P(F \mid A) P(A)}{P(F)} \\
& =\frac{0.95 \times 10-7}{0.01} \\
& =0.95 \times 10-5
\end{aligned}
$$

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- Set of all variables: X
- Hidden variables: $H=X-Y-E$
- If we had the joint probability distribution then could marginalize
- $P(Y \mid E=e)=\alpha \Sigma_{h} P(Y \wedge E=e \wedge H=h)$
- α is the normalization factor

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- Set of all variables: X
- Hidden variables: $H=X-Y-E$
- If we had the joint probability distribution then could marginalize
- $P(Y \mid E=e)=\alpha \Sigma_{h} P(Y \wedge E=e \wedge H=h)$
- α is the normalization factor

Problem: Joint distribution is usually too big to handle

Independence

- Two variables A and B are independent if knowledge of A does not change uncertainty of B (and vice versa)
$-P(A \mid B)=P(A)$
$-P(B \mid A)=P(B)$
$-P(A \wedge B)=P(A) P(B)$
- In general $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\Pi_{i=1}^{n} P\left(X_{i}\right)$

Need only n numbers to specify a joint distribution!

Conditional Independence

- Absolute independence is often too strong a requirement
- Two variables A and B are conditionally independent given C if
$-P(a \mid b, c)=P(a \mid c)$ for all a, b, c
- i.e. knowing the value of B does not change the prediction of A if the value of C is known

Conditional Independence

- Diagnosis problem
- FI = Flu, Fv = Fever, C=Cough
- Full joint distribution has 23-1=7 independent entries
- If someone has the flu, we can assume that the probability of a cough does not depend on having a fever
$-P(C \mid F I, F v)=P(C \mid F I)$
- If the patient does not have the Flu, then C and Fv are again conditionally independent
$-\mathrm{P}(\mathrm{C} \mid \sim \mathrm{FI}, \mathrm{Fv})=\mathrm{P}(\mathrm{C} \mid \sim \mathrm{FI})$

Conditional Independence

- Full distribution can be written as
$-P(C, F I, F v)=P(C, F v \mid F I) P(F I)$

$$
=P(C \mid F I) P(F v|F|) P(F I)
$$

- That is we only need 5 numbers now!
- Huge savings if there are lots of variables

Conditional Independence

- Full distribution can be written as
$-P(C, F I, F v)=P(C, F v \mid F I) P(F I)$

$$
=P(C \mid F I) P(F v|F|) P(F I)
$$

- That is we only need 5 numbers now!
- Huge savings if there are lots of variables

Such a probability distribution is sometimes called a naïve Bayes model.
In practice, they work well - even when the independence assumption is not true

Next class

- Bayesian networks

