Uncertainty [RN2 Sec. 13.1-13.6] [RN3 Sec. 13.1-13.5]

CS 486/686
University of Waterloo
Lecture 7: October 2, 2012

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

1

A Decision Making Scenario

- ·You are considering to buy a used car...
 - Is it in good condition?
 - How much are you willing to pay?
 - Should you get it inspected by a mechanics?
 - Should you buy the car?

In the next few lectures

- Probability theory
 - Model uncertainty
- Utility theory
 - Model preferences
- Decision theory
 - Combine probability theory and utility theory

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

3

Introduction

- Logical reasoning breaks down when dealing with uncertainty
- · Example: Diagnosis
 - ∀p Symptom(p,Toothache) \Rightarrow Disease(p, Cavity)
 - · But not all people with toothaches have cavities...
 - ∀p Symptom(p, Toothache) ⇒ Disease(p,Cavity) v
 Disease(p,Gumdisease) v Disease(p, Hit in the Jaw) v ...
 - · Can't enumerate all possible causes and not very informative
 - ∀p Disease(p, Cavity) \Rightarrow Symptom(p, Toothache)
 - · Does not work since not all cavities cause toothaches...

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Introduction

- · Logic fails because
 - We are lazy
 - Too much work to write down all antecedents and consequences
 - Theoretical ignorance
 - Sometimes there is just no complete theory
 - Practical ignorance
 - Even if we knew all the rules, we might be uncertain about a particular instance (not collected enough information yet)

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

5

Probabilities to the rescue

- For many years AI danced around the fact that the world is an uncertain place
- Then a few AI researchers decided to go back to the 18th century
 - Revolutionary
 - Probabilities allow us to deal with uncertainty that comes from our laziness and ignorance
 - Clear semantics
 - Provide principled answers for
 - Combining evidence, predictive and diagnostic reasoning, incorporation of new evidence
 - Can be learned from data
 - Intuitive for humans (?)

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Discrete Random Variables

- Random variable A describes an outcome that cannot be determined in advance (i.e. roll of a dice)
 - Discrete random variable means that its possible values come from a countable domain (sample space)
 - E.G If X is the outcome of a dice throw, then X ∈ {1,2,3,4,5,6}
 - Boolean random variable $A \in \{True, False\}$
 - · A = The Canadian PM in 2040 will be female
 - · A = You have Ebola
 - A = You wake up tomorrow with a headache

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

7

Events

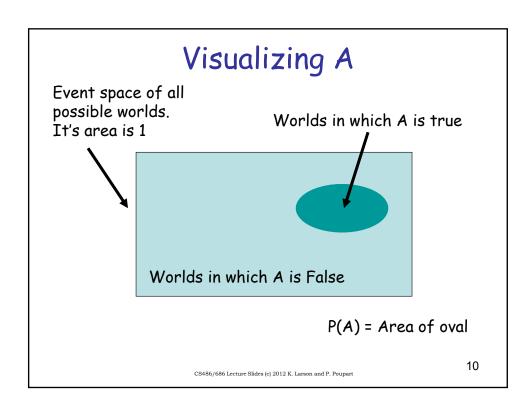
- An event is a complete specification of the state of the world in which the agent is uncertain
 - Subset of the sample space
- · Example:
 - Cavity=True ∧ Toothache=True
 - Dice=2
- Events must be
 - Mutually exclusive
 - Exhaustive (at least one event must be true)

8

Probabilities

- We let P(A) denote the "degree of belief" we have that statement A is true
 - Also "fraction of worlds in which A is true"
 - Philosophers like to discuss this (but we won't)
- · Note:
 - P(A) DOES NOT correspond to a degree of truth
 - Example: Draw a card from a shuffled deck
 - The card is of some type (e.g ace of spades)
 - Before looking at it P(ace of spades) = 1/52
 - · After looking at it P(ace of spades) = 1 or 0

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart



The Axioms of Probability

- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- $P(A \vee B) = P(A) + P(B) P(A \wedge B)$
- These axioms limit the class of functions that can be considered as probability functions

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

11

Interpreting the axioms

- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

The area of A can't be smaller than 0

•

A zero area would mean no world could ever have A as true

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Interpreting the axioms

- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

The area of A can't be larger than 1

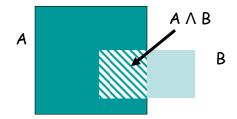
An area of 1 would mean all possible worlds have A as true

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

13

Interpreting the axioms

- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Take the axioms seriously!

- There have been attempts to use different methodologies for uncertainty
 - Fuzzy logic, three valued logic, Dempster-Shafer, non-monotonic reasoning,...
- But if you follow the axioms of probability then no one can take advantage of you ©

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

15

A Betting Game [di Finetti 1931]

- Propositions A and B
- Agent 1 announces its "degree of belief" in A and B (P(A) and P(B))
- Agent 2 chooses to bet for or against A and B at stakes that are consistent with P(A) and P(B)
- If Agent 1 does not follow the axioms, it is guaranteed to lose money

Agent 1		Agent 2		Outcome for Agent 1			
Proposition	n Belief	Bet	Odds	A∧B	A ∧~B	~ <i>A</i> ∧B	~ A ∧~B
Α	0.4	Α	4 to 6	-6	-6	4	4
В	0.3	В	3 to 7	-7	3	-7	3
AVB	0.8	~(AVB)	2 to 8	2	2	2	-8
				-11	-1	-1	-1
CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart						16	

Theorems from the axioms

- Thm: $P(\sim A)=1-P(A)$
- Proof: P(AV~A)=P(A)+P(~A)-P(AA~A)
 P(True)=P(A)+P(~A)-P(False)
 1 = P(A)+P(~A)-O
 P(~A)=1-P(A)

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

17

Theorems from axioms

- Thm: $P(A) = P(A \land B) + P(A \land \sim B)$
- Proof: For you to do

Why? Because it is good for you

18

Multivalued Random Variables

- Assume domain of A (sample space) is $\{v_1, v_2, ..., v_k\}$
- A can take on exactly one value out of this set
 - $P(A=v_i \land A=v_j) = 0 \text{ if } i \neq j$
 - $-P(A=v_1 \ V \ A=v_2 \ V ... \ V \ A=v_k) = 1$

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

19

Terminology

- Probability distribution:
 - A specification of a probability for each event in our sample space
 - Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
 - Joint probability distribution
 - Specification of probabilities for all combinations of events

20

Joint distribution

- Given two random variables A and B:
- · Joint distribution:
 - $Pr(A=a\Lambda B=b)$ for all a,b
- Marginalisation (sumout rule):
 - $Pr(A=a) = \Sigma_b Pr(A=a\Lambda B=b)$
 - $Pr(B=b) = \Sigma_a Pr(A=a\Lambda B=b)$

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

21

Example: Joint Distribution

sunny			~sunny				
	cold	~cold				cold	~cold
			١,			0.070	0 000

		3313			3313
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

P(headache Λ sunny Λ cold) = 0.108 P(Λ eadache Λ sunny Λ cold) = 0.064

P(headacheVsunny) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

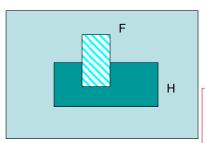
$$P(headache) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

marginalization

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Conditional Probability

• P(A|B) fraction of worlds in which B is true that also have A true



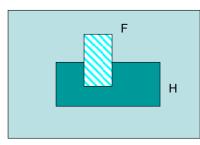
H="Have headache" F="Have Flu"

P(H)=1/10 P(F)=1/40 P(H|F)=1/2

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Conditional Probability



H="Have headache" F="Have Flu"

P(H)=1/10 P(F)=1/40 P(H|F)=1/2 P(H|F)= Fraction of flu inflicted worlds in which you have a headache

- =(# worlds with flu and headache)/ (# worlds with flu)
- = (Area of "H and F" region)/ (Area of "F" region)
- = $P(H \wedge F)/P(F)$

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Conditional Probability

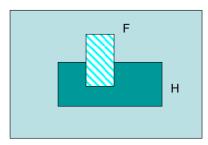
- · Definition:
 - -P(A|B) = P(AAB) / P(B)
- · Chain rule:
 - $-P(A \wedge B) = P(A | B) P(B)$

Memorize these!

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

25

Inference



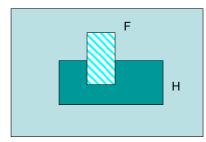
One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

H="Have headache" F="Have Flu"

P(H)=1/10 P(F)=1/40 P(H|F)=1/2 Is your reasoning correct?

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Inference



One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

H="Have headache" F="Have Flu"

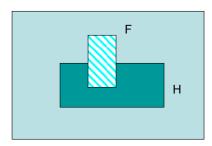
 $P(F\Lambda H)=P(F)P(H|F)=1/80$

P(H)=1/10 P(F)=1/40 P(H|F)=1/2

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

27

Inference



One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

H="Have headache" F="Have Flu"

 $P(F\Lambda H)=P(F)P(H|F)=1/80$

P(H)=1/10 P(F)=1/40 P(H|F)=1/2

 $P(F|H) = P(F\Lambda H)/P(H) = 1/8$

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Example: Joint Distribution

sunny ~Sunny

	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

P(headache \land cold | sunny) = P(headache \land cold \land sunny) / P(sunny)

= 0.108/(0.108+0.012+0.016+0.064)

P(headache \land cold | \sim sunny) = P(headache \land cold \land \sim sunny) / P(\sim sunny)

= 0.072/(0.072+0.008+0.144+0.576)

= 0.09 CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Bayes Rule

- · Note
 - $-P(A|B)P(B) = P(A \wedge B) = P(B \wedge A) = P(B|A)P(A)$
- · Bayes Rule
 - -P(B|A)=[P(A|B)P(B)]/P(A)

Memorize this!

30

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- · Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H, given evidence e

Prior probability Likelihood

Posterior probability

Normalizing constant

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

31

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\neg A)P(\neg A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

$$P(A = v_i|B) = \frac{P(B|A = v_i)P(A = v_i)}{\sum_{k=1}^{n} P(B|A = v_k)P(A = v_k)}$$
₃

Example

- A doctor knows that Asian flu causes a fever 95% of the time. She knows that if a person is selected at random from the population, they have a 10⁻⁷ chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

33

Example

- A doctor knows that Asian flu causes a fever 95% of the time.
 She knows that if a person is selected at random from the population, they have a 10-7 chance of having Asian flu. 1 in 100 people suffer from a fever.
- You go to the doctor complaining about the symptom of having a fever. What is the probability that Asian flu is the cause of the fever?

```
A=Asian flu Evidence = Symptom (F)
F= fever Hypothesis = Cause (A)
```

$$P(A|F) = \frac{P(F|A)P(A)}{P(F)}$$

= $\frac{0.95 \times 10^{-7}}{0.01}$
= 0.95×10^{-5}

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- · Set of all variables: X
- Hidden variables: H=X-Y-E
- If we had the joint probability distribution then could marginalize
- $P(Y|E=e) = \alpha \Sigma_h P(Y \land E=e \land H=h)$
 - α is the normalization factor

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

35

Computing conditional probabilities

- Often we are interested in the posterior joint distribution of some query variables Y given specific evidence e for evidence variables E
- Set of all variables: X
- Hidden variables: H=X-Y-E
- If we had the joint probability distribution then could marginalize
- $P(Y|E=e) = \alpha \Sigma_h P(Y \land E=e \land H=h)$
 - α is the normalization factor

Problem: Joint distribution is usually too big to handle

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

Independence

- Two variables A and B are independent if knowledge of A does not change uncertainty of B (and vice versa)
 - -P(A|B)=P(A)
 - -P(B|A)=P(B)
 - $P(A \wedge B) = P(A)P(B)$
 - In general $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i)$

Need only n numbers to specify a joint distribution!

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

37

Conditional Independence

- Absolute independence is often too strong a requirement
- Two variables A and B are conditionally independent given C if
 - P(a|b,c)=P(a|c) for all a,b,c
 - i.e. knowing the value of B does not change the prediction of A if the value of C is known

38

Conditional Independence

- Diagnosis problem
 - FI = Flu, Fv = Fever, C=Cough
- Full joint distribution has 2³-1=7 independent entries
- If someone has the flu, we can assume that the probability of a cough does not depend on having a fever
 - P(C|FI,Fv)=P(C|FI)
- If the patient does not have the Flu, then C and Fv are again conditionally independent
 - P(C|~FI, Fv)=P(C|~FI)

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

39

Conditional Independence

- · Full distribution can be written as
 - P(C,FI,Fv)=P(C,Fv|FI)P(FI)= P(C|FI)P(Fv|FI)P(FI)
 - That is we only need 5 numbers now!
 - Huge savings if there are lots of variables

40

Conditional Independence

- · Full distribution can be written as
 - P(C,FI,Fv)=P(C,Fv|FI)P(FI)= P(C|FI)P(Fv|FI)P(FI)
 - That is we only need 5 numbers now!
 - Huge savings if there are lots of variables

Such a probability distribution is sometimes called a naïve Bayes model.

In practice, they work well – even when the independence assumption is not true

CS486/686 Lecture Slides (c) 2012 K. Larson and P. Poupart

41

Next class

· Bayesian networks

42