Learning and Inference in Markov Logic Networks

CS 486/686
University of Waterloo
Lecture 23: November 27, 2012

Outline

- Markov Logic Networks
 - Parameter learning
 - Lifted inference
Parameter Learning

- Where do Markov logic networks come from?
- Easy to specify first order formulas
- Hard to specify weights due to unclear interpretation

- Solution:
 - Learn weights from data
 - Preliminary work to learn first-order formulas from data

Parameter tying

- Observation: first-order formulas in Markov logic networks specify templates of features with identical weights

- Key: tie parameters corresponding to identical weights

- Parameter learning:
 - Same as in Markov networks
 - But many parameters are tied together
Parameter tying

- Parameter tying → few parameters
 - Faster learning
 - Less training data needed

- Maximum likelihood: \(\theta^* = \arg\max_\theta P(\text{data}|\theta) \)
 - Complete data: convex opt., but no closed form
 - Gradient descent, conjugate gradient, Newton's method
 - Incomplete data: non-convex optimization
 - Variants of the EM algorithm

Grounded Inference

- Grounded models
 - Bayesian networks
 - Markov networks

- Common property
 - Joint distribution is a product of factors

- Inference queries: \(\Pr(X|E) \)
 - Variable elimination
Grounded Inference

- Inference query: \(\text{Pr}(\alpha|\beta) \)?
 - \(\alpha \) and \(\beta \) are first order formulas

- Grounded inference:
 - Convert Markov Logic Network to ground Markov network
 - Convert \(\alpha \) and \(\beta \) into grounded clauses
 - Perform variable elimination as usual

- This defeats the purpose of having a compact representation based on first-order logic... *Can we exploit the first-order representation?*

Lifted Inference

- Observation: first order formulas in Markov Logic Networks specify templates of identical potentials.

- Question: can we speed up inference by taking advantage of the fact that some potentials are identical?
Caching

• Idea: cache all operations on potentials to avoid repeated computation

• Rational: since some potentials are identical, some operations on potentials may be repeated.

• Inference with caching: Pr(α|β)?
 - Convert Markov logic network to ground Markov network
 - Convert α and β to grounded clauses
 - Perform variable elimination with caching
 • Before each operation on factors, check answer in cache
 • After each operation on factors, store answer in cache

Caching

• How effective is caching?

• Computational complexity
 - Still exponential in the size of the largest intermediate factor
 - But, potentially sub-linear in the number of ground potentials/features
 • This can be significant for large networks

• Savings depend on the amount of repeated computation
 - Elimination order influences amount of repeated computation
Example: Hidden Markov Model

- Conditional distributions:
 - $Pr(S_0), Pr(S_{t+1}|S_t), Pr(O_t|S_t)$
 - Identical factors at each time step

Hidden Markov Models

Markov Logic Network encoding

```plaintext
obs = { Obs1, ..., ObsN }
state = { St1, ..., StM }
time = { 0, ..., T }

State(state!,time)
Obs(obs!,time)

State(+s,0)
State(+s,t) ^ State(+s',t+1)
Obs(+o,t) ^ State(+s,t)
```
State Prediction

- **Common task: state prediction**
 - Suppose we have a belief at time t: $\Pr(S_t|O_{1..t})$
 - Predict state k steps in the future: $\Pr(S_{t+k}|O_{1..t})$?

- $\Pr(S_{t+k}|O_{1..t}) = \sum_{S_{t..s_{t+k-1}}} \Pr(S_t|O_{1..t}) \prod_i \Pr(S_{t+i+1}|S_{t+i})$

- In what order should we eliminate the state variables?

Common Elimination Orders

- **Forward elimination**
 - $\Pr(S_{t+i+1}|O_{1..t}) = \sum_{S_{t+i}} \Pr(S_{t+i}|O_{1..t}) \Pr(S_{t+i+1}|S_{t+i})$
 - $\Pr(S_{t+i}|O_{1..t})$ is different for all i's, so no repeated computation

- **Backward elimination**
 - $\Pr(S_{t+k}|O_{1..t}) = \sum_{S_{t..s_{t+k}}} \Pr(S_{t+k}|S_{t+i+1}) \Pr(S_{t+i+1}|S_{t+i})$
 - $\Pr(S_{t+k}|O_{1..t})$ is different for all i's, so no repeated computation

- Any saving possible?
Pyramidal elimination

• Repeat until all variables are eliminated
 - Eliminate every other variable in order

• Example:
 - Eliminate $S_{t+1}, S_{t+3}, S_{t+5}, S_{t+7}, \ldots$
 - Eliminate $S_{t+2}, S_{t+6}, S_{t+10}, S_{t+14}, \ldots$
 - Eliminate $S_{t+4}, S_{t+12}, S_{t+20}, S_{t+28}, \ldots$
 - Eliminate $S_{t+8}, S_{t+24}, S_{t+40}, S_{t+56}, \ldots$
 - Etc.
Pyramidal elimination

- Observation: all operations at the same level of the pyramid are identical
 - Only one elimination per level needs to be performed

- Computational complexity:
 - $\log(k)$ instead of linear(k)

Automated elimination

- Question: how do we find an effective ordering automatically?
 - This is an area of active research

- Possible heuristic:
 - Before each elimination, examine operations that would have to be performed to eliminate each remaining variable
 - Eliminate variable that involves computation identical to the largest number of other variables (greedy heuristic)
Lifted Inference

- Variable elimination with caching still requires conversion of the Markov logic network to a ground Markov network, can we avoid that?
- Lifted inference:
 - Perform inference directly with first-order representation
 - Lifted variable elimination is an area of active research
 - Complicated algorithms due to first-order representation
 - Overhead due to the first-order representation often greater than savings in repeated computation
- Alchemy
 - Does not perform exact inference
 - Uses lifted approximate inference
 - Lifted belief propagation
 - Lifted MC-SAT (variant of Gibbs sampling)

Next Class

- Course wrap-up