Markov Logic Networks

Matt Richardson and Pedro Domingos (2006), Markov Logic Networks, Machine Learning, 62, 107-136, 2006.

> CS 486/686 University of Waterloo Lecture 21: Nov 20, 2012

Outline

- Markov Logic Networks
- · Alchemy

Markov Logic Networks

- Bayesian networks and Markov networks:
 - Model uncertainty
 - But propositional representation (e.g., we need one variable per object in the world)
- First-order logic:
 - First-order representation (e.g., quantifiers allow us to reason about several objects simultaneously)
 - But we can't deal with uncertainty
- Markov logic networks: combine Markov networks and first-order logic

CS486/686 Lecture Slides (c) 2012 P. Poupart

3

Markov Logic

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: when a world violates a formula, it becomes less probable, not impossible
- Give each formula a weight: (higher weight → stronger constraint)

 $P(world) \propto e^{\Sigma weights}$ of formulas it satisfies

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

CS486/686 Lecture Slides (c) 2012 P. Poupart

5

Example: Friends & Smokers

Smoking causes cancer. Friends have similar smoking habits.

CS486/686 Lecture Slides (c) 2012 P. Poupart

Example: Friends & Smokers

 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

CS486/686 Lecture Slides (c) 2012 P. Poupart

7

Example: Friends & Smokers

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

S486/686 Lecture Slides (c) 2012 P. Poupart

Example: Friends & Smokers

```
1.5 \forall x \; Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \; Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: Anna (A) and Bob (B)

CS486/686 Lecture Slides (c) 2012 P. Poupart

9

Example: Friends & Smokers

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: Anna (A) and Bob (B)

Smokes(A) Sm

Smokes(B)

Cancer(A)

Cancer(B)

CS486/686 Lecture Slides (c) 2012 P. Poupar

```
Example: Friends & Smokers
 1.5
     \forall x \ Smokes(x) \Rightarrow Cancer(x)
      \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))
 1.1
Two constants: Anna (A) and Bob (B)
                             Friends(A,B)
Friends(A,A)
                     Smokes(A)
                                      Smokes(B)
                                                        Friends(B,B)
          Cancer(A)
                                                   Cancer(B)
                             Friends(B,A)
                                                                         11
                          CS486/686 Lecture Slides (c) 2012 P. Poupart
```


Example: Friends & Smokers

1.5
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: Anna (A) and Bob (B)

CS486/686 Lecture Slides (c) 2012 P. Poupart

13

Markov Logic Networks

- · MLN is template for ground Markov nets
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *x*

 Typed variables and constants greatly reduce size of ground Markov net

14

CS486/686 Lecture Slides (c) 2012 P. Poupart

Alchemy

- Open Source AI package
- http://alchemy.cs.washington.edu
- · Implementation of Markov logic networks
- Problem specified in two files:
 - File1.mln (Markov logic network)
 - File2.db (database / data set)
- · Learn weights and structure of MLN
- · Inference queries

CS486/686 Lecture Slides (c) 2012 P. Poupart

15

Markov Logic Encoding

- · File.mln
- Two parts:
 - Declaration
 - · Domain of each variable
 - Predicates
 - Formula
 - · Pairs of weights with logical formula

Markov Logic Encoding

- · Example declaration
 - Domain of each variable
 - person = {Anna, Bob}
 - Predicates:
 - Friends (person, person)
 - Smokes (person)
 - Cancer (person)
- · Example formula
 - -8 Smokes(x) => Cancer(x)
 - -5 Friends(x,y) => (Smokes(x)<=>Smokes(y))

NB: by default, formulas are universally quantified in Alchemy

CS486/686 Lecture Slides (c) 2012 P. Poupart

17

Dataset

- · File.db
- List of facts (ground atoms)
- Example:
 - Friends (Anna, Bob)
 - Smokes (Anna)
 - Cancer (Bob)

18

CS486/686 Lecture Slides (c) 2012 P. Poupart

Syntax

- · Logical connective:
 - -! (not), ^ (and), v (or), => (implies), <=> (iff)
- · Quantifiers:
 - forall (\forall) , exist (\exists)
 - By default unquantified variables are universally quantified in Alchemy
- Operator precedence:
 - -! > ^ > v > => > <=> > forall = exist

CS486/686 Lecture Slides (c) 2012 P. Poupart

19

Syntax

- Short hand for predicates
 - ! operator: indicates that the preceding variable has exactly one true grounding
 - Ex: ${\tt HasPosition}(x,y!)$: for each grounding of x, exactly one grounding of y satisfies ${\tt HasPosition}$
- Short hand for multiple weights
 - + operator: indicates that a different weight should be learned for each grounding of the following variable
 - Ex: outcome (throw, +face): a different weight is learned for each grounding of face

CS486/686 Lecture Slides (c) 2012 P. Poupart

Multinomial Distribution

Example: Throwing dice

Types: throw = { 1, ..., 20 }

face = $\{ 1, ..., 6 \}$

Predicate: Outcome(throw,face)

Formulas: Outcome(t,f) ^ f!=f' => !Outcome(t,f').

Exist f Outcome(t,f).

Too cumbersome!

CS486/686 Lecture Slides (c) 2012 P. Poupart

21

Multinomial Distrib.: ! Notation

Example: Throwing dice

Types: throw = { 1, ..., 20 }

face = { 1, ..., 6 }

Predicate: Outcome(throw,face!)

Formulas:

Semantics: Arguments without "!" determine args with "!". Only one face possible for each throw.

CS486/686 Lecture Slides (c) 2012 P. Poupart

Multinomial Distrib.: + Notation

Example: Throwing biased dice

Types: throw = { 1, ..., 20 } face = { 1, ..., 6 }

Predicate: Outcome(throw,face!)

Formulas: Outcome(t,+f)

Semantics: Learn weight for each grounding of args with "+".

CS486/686 Lecture Slides (c) 2012 P. Poupart

23

Text Classification

```
page = { 1, ..., n }
word = { ... }
topic = { ... }

Topic(page,topic!)
HasWord(page,word)
Links(page,page)

HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Links(p,p') => Topic(p',t)
```

CS486/686 Lecture Slides (c) 2012 P. Poupart

Next Class

Applications of Markov Logic Networks

CS486/686 Lecture Slides (c) 2012 P. Poupart