Markov Logic Networks

CS 486/686
University of Waterloo
Lecture 21: Nov 20, 2012

Outline

• Markov Logic Networks
• Alchemy
Markov Logic Networks

• Bayesian networks and Markov networks:
 - Model uncertainty
 - But propositional representation (e.g., we need one variable per object in the world)

• First-order logic:
 - First-order representation (e.g., quantifiers allow us to reason about several objects simultaneously)
 - But we can’t deal with uncertainty

• Markov logic networks: combine Markov networks and first-order logic

Markov Logic

• A logical KB is a set of hard constraints on the set of possible worlds
• Let’s make them soft constraints: when a world violates a formula, it becomes less probable, not impossible
• Give each formula a weight:
 (higher weight \Rightarrow stronger constraint)

$$P(\text{world}) \propto e^{\sum \text{weights of formulas it satisfies}}$$
Markov Logic: Definition

• A Markov Logic Network (MLN) is a set of pairs \((F, w)\) where
 - \(F\) is a formula in first-order logic
 - \(w\) is a real number
• Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\)

Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.
Example: Friends & Smokers

\[\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \]
\[\forall x, y \, \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)) \]
Example: Friends & Smokers

\[\forall x \ Smokes(x) \Rightarrow Cancer(x) \]
\[\forall x, y \ Friends(x, y) \Rightarrow (\Smokes(x) \Leftrightarrow \Smokes(y)) \]

Two constants: **Anna** (A) and **Bob** (B)
Example: Friends & Smokers

\[\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \]
\[\forall x, y \, \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)) \]

Two constants: **Anna** (A) and **Bob** (B)

![Diagram showing relationships between Anna, Bob, Smokes, and Cancer]

1.5 \[\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \]
1.1 \[\forall x, y \, \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)) \]
Example: Friends & Smokers

\[
\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\
\forall x, y \, \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y))
\]

Two constants: Anna (A) and Bob (B)

Markov Logic Networks

- **MLN** is template for ground Markov nets
- Probability of a world \(x \):
 \[
P(x) = \frac{1}{Z} \exp \left(\sum_i w_i n_i(x) \right)
\]

 - **Weight of formula** \(i \)
 - **No. of true groundings of formula** \(i \) in \(x \)

- **Typed** variables and constants greatly reduce size of ground Markov net
Alchemy

- Open Source AI package
- http://alchemy.cs.washington.edu
- Implementation of Markov logic networks

- Problem specified in two files:
 - File1.mln (Markov logic network)
 - File2.db (database / data set)

- Learn weights and structure of MLN
- Inference queries

Markov Logic Encoding

- File.mln

- Two parts:
 - Declaration
 - Domain of each variable
 - Predicates
 - Formula
 - Pairs of weights with logical formula
Markov Logic Encoding

• Example declaration
 - Domain of each variable
 • person = \{Anna, Bob\}
 - Predicates:
 • Friends(person,person)
 • Smokes(person)
 • Cancer(person)

• Example formula
 - 8 Smokes(x) \implies Cancer(x)
 - 5 Friends(x,y) \implies (Smokes(x) \iff Smokes(y))

NB: by default, formulas are universally quantified in Alchemy

Dataset

• File.db

• List of facts (ground atoms)
• Example:
 - Friends(Anna,Bob)
 - Smokes(Anna)
 - Cancer(Bob)
Syntax

• **Logical connective:**
 - ! (not), ^ (and), v (or), => (implies), <=> (iff)

• **Quantifiers:**
 - forall (\forall), exist (\exists)
 - By default unquantified variables are universally quantified in Alchemy

• **Operator precedence:**
 - ! > ^ > v > => > <=> > forall = exist

Syntax

• **Short hand for predicates**
 - ! operator: indicates that the preceding variable has exactly one true grounding
 - Ex: HasPosition(x,y!): for each grounding of x, exactly one grounding of y satisfies HasPosition

• **Short hand for multiple weights**
 - + operator: indicates that a different weight should be learned for each grounding of the following variable
 - Ex: outcome(throw,+face): a different weight is learned for each grounding of face
Multinomial Distribution

Example: Throwing dice

Types: \[\text{throw} = \{ 1, \ldots, 20 \} \]
 \[\text{face} = \{ 1, \ldots, 6 \} \]
Predicate: \(\text{Outcome(throw,face)} \)
Formulas:
\[
\text{Outcome}(t,f) \land f \neq f' \Rightarrow \neg \text{Outcome}(t,f'). \\
\exists f \text{ Outcome}(t,f).
\]

Too cumbersome!

Multinomial Distrib.: ! Notation

Example: Throwing dice

Types: \[\text{throw} = \{ 1, \ldots, 20 \} \]
 \[\text{face} = \{ 1, \ldots, 6 \} \]
Predicate: \(\text{Outcome(throw,face!)} \)
Formulas:

Semantics: Arguments without "!" determine args with "!".
Only one face possible for each throw.
Multinomial Distrib.: + Notation

Example: Throwing biased dice

Types:
- `throw` = {1, ..., 20}
- `face` = {1, ..., 6}

Predicate: `Outcome(throw, face!)`

Formulas: `Outcome(t,+f)`

Semantics: Learn weight for each grounding of args with “+”.

Text Classification

page = {1, ..., n}
word = {...}
topic = {...}

`Topic(page,topic!)`
`HasWord(page,word)`
`Links(page,page)`

`HasWord(p,+w) => Topic(p,+t)`
`Topic(p,t) ^ Links(p,p') => Topic(p',t)`
Next Class

- Applications of Markov Logic Networks