Outline

• Markov Logic Networks
• Alchemy

• Readings:
Markov Logic Networks

• Bayesian networks and Markov networks:
 - Model uncertainty
 - But propositional representation (e.g., we need one variable per object in the world)

• First-order logic:
 - First-order representation (e.g., quantifiers allow us to reason about several objects simultaneously)
 - But we can’t deal with uncertainty

• Markov logic networks: combine Markov networks and first-order logic
Markov Logic

• A logical KB is a set of hard constraints on the set of possible worlds
• Let’s make them soft constraints: when a world violates a formula, it becomes less probable, not impossible
• Give each formula a weight: (higher weight \Rightarrow stronger constraint)

$$P(\text{world}) \propto e^{\sum \text{weights of formulas it satisfies}}$$
Markov Logic: Definition

• A Markov Logic Network (MLN) is a set of pairs \((F, w)\) where
 - \(F\) is a formula in first-order logic
 - \(w\) is a real number

• Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\)
Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.
Example: Friends & Smokers

\[\forall x \ Smokes(x) \Rightarrow Cancer(x) \]
\[\forall x, y \ Friends(x, y) \Rightarrow (\Smokes(x) \iff \Smokes(y)) \]
Example: Friends & Smokers

<table>
<thead>
<tr>
<th></th>
<th>(\forall x \text{ Smokes}(x) \Rightarrow \text{Cancer}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>(\forall x, y \text{ Friends}(x, y) \Rightarrow (\text{Smokes}(x) \iff \text{Smokes}(y)))</td>
</tr>
</tbody>
</table>
Example: Friends & Smokers

<table>
<thead>
<tr>
<th>1.5</th>
<th>$\forall x \text{ Smokes}(x) \Rightarrow \text{Cancer}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>$\forall x, y \text{ Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y))$</td>
</tr>
</tbody>
</table>

Two constants: **Anna** (A) and **Bob** (B)
Example: Friends & Smokers

Two constants: **Anna** (A) and **Bob** (B)

\[
\begin{align*}
1.5 & \quad \forall x \ Smokes(x) \Rightarrow Cancer(x) \\
1.1 & \quad \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))
\end{align*}
\]
Example: Friends & Smokers

1.5 \(\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \)

1.1 \(\forall x, y \, \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)) \)

Two constants: Anna (A) and Bob (B)
Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

\[
\begin{align*}
1.5 & \quad \forall x \ Smokes(x) \Rightarrow Cancer(x) \\
1.1 & \quad \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))
\end{align*}
\]
Example: Friends & Smokers

1.5 \(\forall x \, \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \)

1.1 \(\forall x, y \, \text{Friends}(x, y) \Rightarrow \bigl(\text{Smokes}(x) \iff \text{Smokes}(y) \bigr) \)

Two constants: Anna (A) and Bob (B)
Markov Logic Networks

- **MLN is template** for ground Markov nets
- Probability of a world x:

 $$P(x) = \frac{1}{Z} \exp\left(\sum_i w_i n_i(x)\right)$$

 - Weight of formula i
 - No. of true groundings of formula i in x

- **Typed** variables and constants greatly reduce size of ground Markov net
Alchemy

- Open Source AI package
- http://alchemy.cs.washington.edu
- Implementation of Markov logic networks

- Problem specified in two files:
 - File1.mln (Markov logic network)
 - File2.db (database / data set)

- Learn weights and structure of MLN
- Inference queries
Markov Logic Encoding

• File.mln

• Two parts:
 - Declaration
 • Domain of each variable
 • Predicates
 - Formula
 • Pairs of weights with logical formula
Markov Logic Encoding

• Example declaration
 - Domain of each variable
 • person = {Anna, Bob}
 - Predicates:
 • Friends(person,person)
 • Smokes(person)
 • Cancer(person)

• Example formula
 - 8 Smokes(x) => Cancer(x)
 - 5 Friends(x,y) => (Smokes(x)<=>Smokes(y))

NB: by default, formulas are universally quantified in Alchemy
Dataset

• File.db

• List of facts (ground atoms)

• Example:
 - Friends(Anna,Bob)
 - Smokes(Anna)
 - Cancer(Bob)
Syntax

- Logical connective:
 - ! (not), ^ (and), v (or), => (implies), <=> (iff)

- Quantifiers:
 - forall (\forall), exist (\exists)
 - By default unquantified variables are universally quantified in Alchemy

- Operator precedence:
 - ! > ^ > v > => > <=> > forall = exist
Syntax

• Short hand for predicates
 - ! operator: indicates that the preceding variable has exactly one true grounding
 - Ex: $\text{HasPosition}(x,y!)$: for each grounding of x, exactly one grounding of y satisfies HasPosition

• Short hand for multiple weights
 - + operator: indicates that a different weight should be learned for each grounding of the following variable
 - Ex: $\text{outcome}(\text{throw}, +\text{face})$: a different weight is learned for each grounding of face
Multinomial Distribution

Example: Throwing dice

Types:
\begin{align*}
\text{throw} & = \{ 1, \ldots, 20 \} \\
\text{face} & = \{ 1, \ldots, 6 \}
\end{align*}

Predicate: \(\text{Outcome}(\text{throw}, \text{face}) \)

Formulas:
\begin{align*}
\text{Outcome}(t, f) \land f \neq f' & \Rightarrow \neg \text{Outcome}(t, f'). \\
\exists f \text{ Outcome}(t, f).
\end{align*}

Too cumbersome!
Multinomial Distrib.: ! Notation

Example: Throwing dice

Types:
\[\text{throw} = \{ 1, \ldots, 20 \} \]
\[\text{face} = \{ 1, \ldots, 6 \} \]

Predicate: \text{Outcome} (\text{throw}, \text{face}!)

Formulas:

Semantics: Arguments without ‘!’ determine args with ‘!’.
Only one face possible for each throw.
Multinomial Distrib.: + Notation

Example: Throwing biased dice

Types:
 throw = \{ 1, \ldots, 20 \}
 face = \{ 1, \ldots, 6 \}

Predicate: Outcome(\text{throw},\text{face})

Formulas: Outcome(t,+f)

Semantics: Learn weight for each grounding of args with “+”.
Text Classification

\[
\text{page} = \{1, \ldots, n\} \\
\text{word} = \{\ldots\} \\
\text{topic} = \{\ldots\}
\]

\text{Topic}(\text{page},\text{topic})! \\
\text{HasWord}(\text{page},\text{word}) \\
\text{Links}(\text{page},\text{page})

\text{HasWord}(p,+w) \Rightarrow \text{Topic}(p,+t) \\
\text{Topic}(p,t) \land \text{Links}(p,p') \Rightarrow \text{Topic}(p',t)
Next Class

• Applications of Markov Logic Networks