Markov Networks

November 12, 2009 CS 486/686 University of Waterloo

Outline

- · Markov networks (a.k.a. Markov random fields)
- · Reading: Michael Jordan, Graphical Models, Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004.

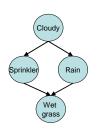
2

Cloudy

Rain

Recall Bayesian networks

- · Directed acyclic graph
- · Arcs often interpreted as causal relationships
- Joint distribution: product of conditional dist



Cloudy

3

Markov networks

- · Undirected graph
- Arcs simply indicate direct correlations
- Joint distribution: normalized product of potentials
- Popular in computer vision and natural language processing

Parameterization

Joint: normalized product of potentials $Pr(X) = 1/k \prod_i f_i(CLIQUE_i)$ = $1/k f_i(C,S,R) f_2(S,R,W)$

where k is a normalization constant $k = \sum_{X_i} \Pi_j f_j(CLIQUE_j)$ = $\sum_{C,S,R,W} f_1(C,S,R) f_2(S,R,W)$

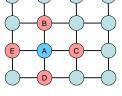
- · Potential:
 - Non-negative factor
 - Potential for each maximal clique in the graph
 - Entries: "likelihood strength" of different configurations.

Potential Example $f_1(C,S,R)$ csr 3 c~sr is more 2.5 cs~r likely than cs~r 5 c~sr c~s~r 5.5 0 ~csr 2.5 ~cs~r impossible ~c~sr 0 configuration ~c~s~r 6

Markov property

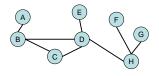
- · Markov property: a variable is independent of all other variables given its immediate neighbours.
- Markov blanket: set of direct neighbours

 $MB(A) = \{B,C,D,E\}$



Conditional Independence

- · X and Y are independent given Z iff there doesn't exist any path between X and Y that doesn't contain any of the variables in Z
- Exercise:
 - A.E?
 - A,E|D?
 - A,E|C?
 - A,E|B,C?



Interpretation

- · Markov property has a price:
 - Numbers are not probabilities
- What are potentials?
 - They are indicative of local correlations
- What do the numbers mean?
 - They are indicative of the likelihood of each configuration
 - Numbers are usually learnt from data since it is hard to specify them by hand given their lack of a clear interpretation

Applications

- Natural language processing:
 - Part of speech tagging
- · Computer vision
 - Image segmentation
- Any other application where there is no clear causal relationship

10

Image Segmentation

Segmentation of the Alps Kervrann, Heitz (1995) A Markov Random Field model-based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics, IEEE Transactions on Image Processing, vol 4, no 6, p 856-862

Image Segmentation

- Variables
 - Pixel features (e.g. intensities): X_{ii}
 - Pixel labels: Y_{ij}
- Correlations:
 - Neighbouring pixel labels are correlated
 - Label and features of a pixel are correlated
- Segmentation:
 - argmaxy Pr(Y|X)?

2

Inference

- · Markov nets: factored representation
 - Use variable elimination
- · P(X|E=e)?
 - Restrict all factors that contain E to e
 - Sumout all variables that are not X or in E
 - Normalize the answer

13

15

17

Parameter Learning

- Maximum likelihood
 - $\theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)$
- Complete data
 - Convex optimization, but no closed form solution
 - Iterative techniques such as gradient descent
- Incomplete data
 - Non-convex optimization
 - EM algorithm

14

Maximum likelihood

- Let θ be the set of parameters and \mathbf{x}_{i} be the ith instance in the dataset
- Optimization problem:

assignment for that clique

Maximum likelihood

- Let $\theta_x = f(X=x)$
- Optimization continued:

$$\begin{aligned} & - \theta^{\star} = \operatorname{argmax}_{\theta} \Pi_{i} \frac{\Pi_{j} \theta_{\mathbf{X}[j]}}{\Sigma_{\mathbf{X}} \Pi_{j} \theta_{\mathbf{X}[j]}} \\ & = \operatorname{argmax}_{\theta} \log \Pi_{i} \frac{\Pi_{j} \theta_{\mathbf{X}[j]}}{\Sigma_{\mathbf{X}} \Pi_{j} \theta_{\mathbf{X}[j]}} \\ & = \Sigma_{\mathbf{X}} \Pi_{j} \theta_{\mathbf{X}[j]} \end{aligned}$$

= $\operatorname{argmax}_{\theta} \Sigma_{i} \Sigma_{j} \log \theta_{X_{i}[j]}$ - $\log \Sigma_{X} \Pi_{j} \theta_{X_{i}[j]}$

· This is a non-concave optimization problem

16

Maximum likelihood

- Substitute $\lambda = \log \theta$ and the problem becomes concave:
 - λ^* = argmax_{λ} Σ_i Σ_i $\lambda_{X_i[i]}$ $\log \Sigma_X$ e Σ_i $\lambda_{X_i[i]}$
- Possible algorithms:
 - Gradient ascent
 - Conjugate gradient

Feature-based Markov Networks

- · Generalization of Markov networks
 - May not have a corresponding graph
 - Use features and weights instead of potentials
 - Use exponential representation
- $Pr(X=x) = 1/k e^{\sum_{j} \lambda_{j} \phi_{j}(x[j])}$ where x[j] is a variable assignment for a subset of variables specific to ϕ_j
- Feature $\phi_i\colon \text{Boolean function that maps partial variable assignments to 0 or 1}$
- Weight λ_i : real number

18

Feature-based Markov Networks

· Potential-based Markov networks can always be converted to feature-based Markov networks

$$\begin{split} \text{Pr}(\textbf{x}) &= 1/k \; \Pi_{j} \; f_{j}(\textit{CLIQUE}_{j} = \textbf{x}[j]) \\ &= 1/k \; e^{\; \Sigma_{j}, \text{clique}_{j} \; \lambda_{j}, \text{clique}_{j} \; \phi_{j}, \text{clique}_{j}(\textbf{x}[j])} \end{split}$$

- $\begin{array}{l} \bullet \;\; \lambda_{j, \text{clique}_j} = \log \; f_j(\textit{CLIQUE}_j = \textbf{x}[j]) \\ \bullet \;\; \varphi_{j, \text{clique}_j}(\textbf{x}[j]) = 1 \; \text{if } \; \textbf{clique}_j = \textbf{x}[j], \; 0 \; \text{otherwise} \end{array}$

Cxample					
$f_1(C,S,R)$		1	weights	features	
		$\ \ $	2 - 1 2	(CCD) -	1 if CSR = csr
csr	3		$\lambda_{1,csr} = log 3$	$\phi_{1,csr}$ (CSR) =	0 otherwise
cs~r	2.5		λ _{1,*s~r} = log 2.5	$\phi_{1,\star_{S\sim r}}(CSR) =$	1 if CSR = *s~r
	5	1			0 otherwise
c~sr	5	1	1 - I E	+ (CCD) -	1 if CSR = c~sr
c~s~r	5.5		λ _{1,c~sr} = log 5	$\phi_{c\sim sr}(CSR) =$	0 otherwise
~csr	0	1	$\lambda_{1,c\sim s\sim r} = \log 5.5$	$\phi_{1,c\sim s\sim r}$ (CSR) =	1 if CSR = c~s~r
.031	-	1	,		0 otherwise
~cs~r	2.5		λ _{1,~c*r} = log 0	$\phi_{1,\sim c^*r}(CSR) =$	1 if CSR = ~c*r
~c~sr	0	1		•	0 otherwise
~c~s~r	-	ł	$\lambda_{1,\sim c\sim s\sim r} = \log 7$	$\phi_{\sim c \sim s \sim r}(CSR) =$	1 if CSR = ~c~s~r
	/		,		0 otherwise

Example

Features

- Features
 - Any Boolean function
 - Provide tremendous flexibility
- · Example: text categorization
 - Simplest features: presence/absence of a word in a document

 - More complex features
 Presence/absence of specific expressions
 Presence/absence of two words within a certain window
 - Presence/absence of any combination of words
 Presence/absence of a figure of style

 - Presence/absence of any linguistic feature

21

Next Class

· Conditional random fields

22