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Outline

• Markov networks (a.k.a. Markov random 
fields)

• Reading: Michael Jordan, Graphical 
Models, Statistical Science (Special 
Issue on Bayesian Statistics), 19, 140-
155, 2004.
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Recall Bayesian networks
• Directed acyclic graph

• Arcs often interpreted 
as causal relationships

• Joint distribution:
product of conditional dist
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Markov networks
• Undirected graph

• Arcs simply indicate 
direct correlations

• Joint distribution: 
normalized product of potentials 

• Popular in computer vision and 
natural language processing
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Parameterization
• Joint: normalized product of potentials

Pr(X) =  1/k Πj fj(CLIQUEj)
= 1/k f1(C,S,R) f2(S,R,W)

where k is a normalization constant
k = ΣXi Πj fj(CLIQUEj)

= ΣC,S,R,W f1(C,S,R) f2(S,R,W)

• Potential: 
– Non-negative factor
– Potential for each maximal clique in the graph
– Entries: “likelihood strength” of different configurations.
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Potential Example

7~c~s~r
0~c~sr
2.5~cs~r
0~csr
5.5c~s~r
5c~sr
2.5cs~r
3csr

f1(C,S,R)

impossible 
configuration

c~sr is more 
likely than cs~r
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Markov property
• Markov property: a variable is 

independent of all other variables given 
its immediate neighbours.

• Markov blanket: 
set of direct 
neighbours

MB(A) = {B,C,D,E}
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Conditional Independence
• X and Y are independent given Z iff

there doesn’t exist any path between X 
and Y that doesn’t contain any of the 
variables in Z

• Exercise:
– A,E?
– A,E|D?
– A,E|C?
– A,E|B,C?
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Interpretation
• Markov property has a price:

– Numbers are not probabilities

• What are potentials?
– They are indicative of local correlations

• What do the numbers mean?
– They are indicative of the likelihood of each 

configuration
– Numbers are usually learnt from data since it is 

hard to specify them by hand given their lack of a 
clear interpretation
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Applications

• Natural language processing:
– Part of speech tagging

• Computer vision
– Image segmentation

• Any other application where there is no 
clear causal relationship
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Image Segmentation

Segmentation of the Alps
Kervrann, Heitz (1995) A Markov Random Field model-based Approach to 
Unsupervised Texture Segmentation Using Local and Global Spatial
Statistics, IEEE Transactions on Image Processing, vol 4, no 6, p 856-862
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Image Segmentation
• Variables

– Pixel features (e.g. intensities): Xij

– Pixel labels: Yij

• Correlations:
– Neighbouring pixel 

labels are correlated
– Label and features of 

a pixel are correlated
• Segmentation: 

– argmaxY Pr(Y|X)?
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Inference

• Markov nets: factored representation
– Use variable elimination

• P(X|E=e)?
– Restrict all factors that contain E to e
– Sumout all variables that are not X or in E
– Normalize the answer
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Parameter Learning
• Maximum likelihood

– θ* = argmaxθ P(data|θ)

• Complete data
– Convex optimization, but no closed form solution
– Iterative techniques such as gradient descent

• Incomplete data
– Non-convex optimization
– EM algorithm
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Maximum likelihood
• Let θ be the set of parameters and
xi be the ith instance in the dataset

• Optimization problem:
– θ* = argmaxθ P(data|θ)

= argmaxθ Πi Pr(xi|θ)
= argmaxθ Πi Πj f(X[j]=xi[j])

ΣX Πj f(X[j]=xi[j])
where X[j] is the clique of variables that 
potential j depends on and x[j] is a variable 
assignment for that clique
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Maximum likelihood
• Let θx = f(X=x)
• Optimization continued:

– θ* = argmaxθ Πi Πj θXi[j]
ΣX Πj θXi[j]

= argmaxθ log Πi Πj θXi[j]
ΣX Πj θXi[j]

= argmaxθ Σi Σj log θXi[j] – log ΣX Πj θXi[j]

• This is a non-concave optimization 
problem
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Maximum likelihood

• Substitute λ = log θ and the problem 
becomes concave:
– λ* = argmaxλ Σi Σj λXi[j] – log ΣX e Σj λXi[j]

• Possible algorithms:
– Gradient ascent
– Conjugate gradient
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Feature-based Markov Networks
• Generalization of Markov networks

– May not have a corresponding graph
– Use features and weights instead of potentials
– Use exponential representation

• Pr(X=x) = 1/k e Σj λj φj(x[j])  

where x[j] is a variable assignment for a 
subset of variables specific to φj

• Feature φj: Boolean function that maps partial 
variable assignments to 0 or 1

• Weight λj: real number
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Feature-based Markov Networks

• Potential-based Markov networks can 
always be converted to feature-based 
Markov networks 

Pr(x) = 1/k Πj fj(CLIQUEj = x[j]) 
= 1/k e Σj,cliquej λj,cliquej φj,cliquej(x[j])

• λj,cliquej = log fj(CLIQUEj = x[j]) 
• φj,cliquej(x[j])=1 if cliquej=x[j], 0 otherwise
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Example

7~c~s~r
0~c~sr
2.5~cs~r
0~csr
5.5c~s~r
5c~sr
2.5cs~r
3csr

f1(C,S,R)

1 if CSR = c~s~rφ1,c~s~r (CSR) =λ1,c~s~r = log 5.5
0 otherwise
1 if CSR = ~c*rφ1,~c*r(CSR) =λ1,~c*r = log 0
0 otherwise
1 if CSR = ~c~s~rφ~c~s~r(CSR) =λ1,~c~s~r = log 7
0 otherwise

1 if CSR = c~sr
φc~sr(CSR) =λ1,c~sr = log 5

0 otherwise

1 if CSR = *s~r
φ1,*s~r(CSR) =λ1,*s~r = log 2.5

0 otherwise

0 otherwise
1 if CSR = csr

φ1,csr (CSR) =λ1,csr = log 3

featuresweights
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Features
• Features 

– Any Boolean function
– Provide tremendous flexibility

• Example: text categorization
– Simplest features: presence/absence of a word in 

a document
– More complex features

• Presence/absence of specific expressions
• Presence/absence of two words within a certain window
• Presence/absence of any combination of words
• Presence/absence of a figure of style
• Presence/absence of any linguistic feature
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Next Class

• Conditional random fields


