Assignment 1 Solution and Marking Scheme TA: Arthur Carvalho

1. Informed Search (40 points)

1(a) (6 points: 2 for the correct answer and 4 for the proof)

Consider $H_{1}=$ Misplaced Tile Heuristic and $H_{2}=$ Manhattan Distance Heuristic. Acceptable "proofs" should have that H_{2} is better than H_{1} because H_{2} is closer to the correct cost, i.e., $H^{*}(n) \geq H_{2}(n) \geq H_{1}(n)$, where $H^{*}(n)$ is the real cost. This implies that the time taken to do search should be lower. In other words, H_{2} provides a tighter lower bound.

1(b) (7 points for each heuristic: 3 points for correct answer and 4 points for poof)
For a heuristic to be consistent, it must comply with the following:

$$
h(n) \leq c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right) \quad \forall n, n^{\prime}
$$

Proposition: H_{1} is consistent
Proof: 3 cases need to be addressed:
1 - After a move, the SAME NUMBER of tiles is out of position:
In this case, $c\left(n, n^{\prime}\right)=1$ and $H(n)=H\left(n^{\prime}\right)$. So, $h(n) \leq c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$.
2 - After a move, one LESS tile is out of position:
In this case, $c\left(n, n^{\prime}\right)=1$ and $H(n)=H\left(n^{\prime}\right)-1$. So, $h(n) \leq c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$.
3 - After a move, one MORE tile is out of position:
In this case, $c\left(n, n^{\prime}\right)=1$ and $H(n)=H\left(n^{\prime}\right)+1$. So, $h(n) \leq c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$.
These 3 cases show that no matter the move, we will have $h(n) \leq c\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$, which means that after each move the f-cost increases or stays the same. Therefore, f-cost increases monotonically.

Proposition: H_{2} is consistent
The proof for this proposition is almost identical to the proof given above, with the exception that the first case is not possible anymore. When the blank moves, H_{2} 's value is either -1 or +1 from n to n '. Note: An answer like this one was given full marks.

2(a) (3 points for each)

Time complexity: $O\left(b^{d}\right)$;
Space complexity: $O(b d)$.
2(b) (2 points for the correct answer, 5 points for the proof. Note: 2 points will be deducted if no explanation about the fact that it will not go down the tree indefinitely.)
$I D A^{*}$ is complete because the algorithm uses a DFS scheme to visit exhaustively the tree of solutions while increasing continually the fringe depth limit after each iteration, until the goal is reached. This limit stops the search from going down the tree indefinitely.
Note 1: The fact that the fringe ceiling is derived from an f-cost value doesn't change this assumption as long as the branching factor is finite, and that the costs are positive (greater than some constant).
Note 2: This is only true if we assume the computer has enough resources available (memory).

2(c) (2 points for correct answer, 5 points for proof, if proof is not detailed or quite to the key point, 3 points will be deducted.)
$I D A^{*}$ is optimal because it uses a $D F S$ scheme similar to $I D S$, and $I D S$ is optimal. Every time IDA* chooses a new cutoff value, it chooses a value that is larger than its previous cutoff, but that is the smallest value among all the f-cost values encountered so far. Hence, the optimality relies upon the consistency of the heuristic in use, which guarantees that the f-costs are monotonically increasing by some 'optimistic' amount.

2. Constraint Satisfaction (60 points)

1. (15 points: 5 points for each question)

Example of a possible solution:
Variables: V_{1}, \ldots, V_{81}
Domain: $\{0, \ldots, 9\}$
Constraints:

- Each row contains integers from 1 to 9 without duplications;
- Each column contains integers from 1 to 9 without duplications;
- Each box contains integers from 1 to 9 without duplications.

2. (45 points: 15 points will be given for the explanation. 10 points in total for each category. If the number of steps is incorrect (much higher than expected), 2 points for each category will be deducted.)

Example of an acceptable solution for time and number of steps (nodes):

	B		B + FC		B + FC + H	
Easy	50 ms	84	150 ms	61	410 ms	46
Medium	130 ms	1697	210 ms	594	450 ms	93
Difficult	870 ms	19266	740 ms	7253	460 ms	120
Evil	650 ms	12974	380 ms	2579	440 ms	65

Note: Clearly, these values depend on the implementation.

