Informed Search

CS 486/686
University of Waterloo
Sept 16

Outline

- Using knowledge
 - Heuristics
- Best-first search
 - Greedy best-first search
 - A* search
 - Other variations of A*
- Back to heuristics

Recall from last lecture

- Uninformed search methods expand nodes based on "distance" from start node
 - Never look ahead to the goal
 - E.g. in uniform cost search expand the cheapest path. We never consider the cost of getting to the goal
 - Advantage is that we have this information
- But, we often have some additional knowledge about the problem
 - E.g. in traveling around Romania we know the distances between cities so can measure the overhead of going in the wrong direction

Informed Search

- Our knowledge is often on the merit of nodes
 - Value of being at a node
- Different notions of merit
 - If we are concerned about the cost of the solution, we might want a notion of how expensive it is to get from a state to a goal
 - If we are concerned with minimizing computation, we might want a notion of how easy it is to get from a state to a goal
 - We will focus on cost of solution

Informed search

- We need to develop a domain specific heuristic function, h(n)
- h(n) guesses the cost of reaching the goal from node n
 - The heuristic function must be domain specific
 - We often have some information about the problem that can be used in forming a heuristic function (i.e. heuristics are domain specific)

Informed search

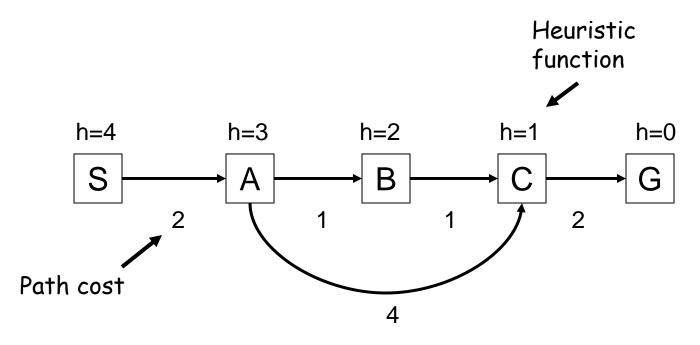
 If h(n1)
 h(n2) then we guess that it is cheaper to reach the goal from n1 than it is from n2

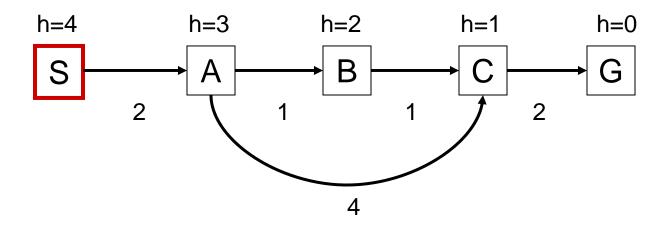
- We require
 - h(n)=0 when n is a goal node
 - h(n)>= 0 for all other nodes

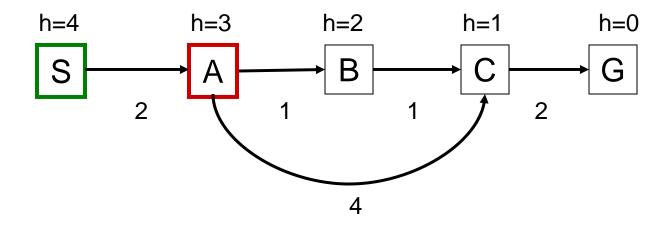
Greedy best-first search

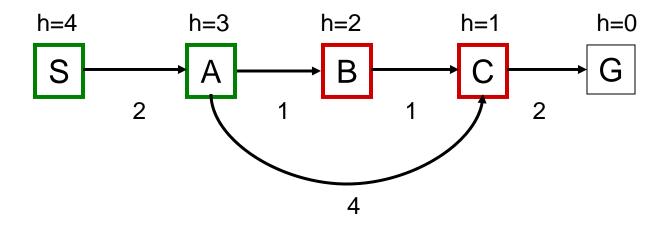
- Use the heuristic function, h(n), to rank the nodes in the fringe
- Search strategy
 - Expand node with lowest h-value
- Greedily trying to find the least-cost solution

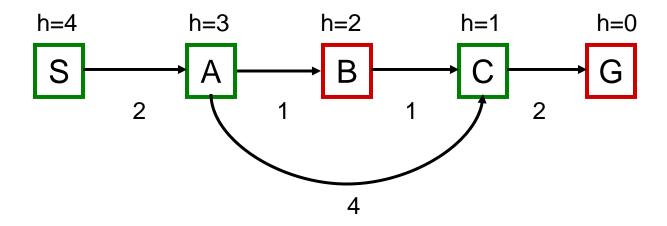
Greedy best-first search: Example

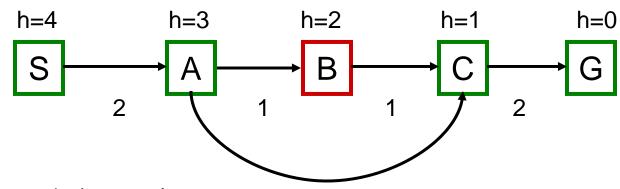












4

Found the goal

Path is S, A, C, G

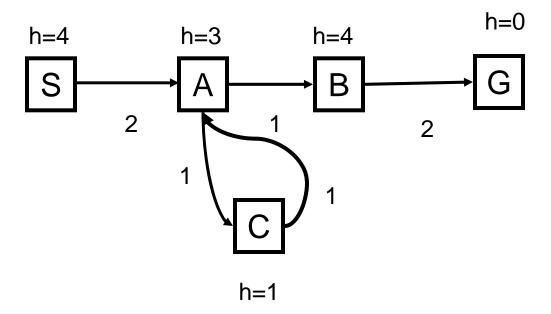
Cost of the path is 2+4+2=8

But cheaper path is S, A, B, C, G

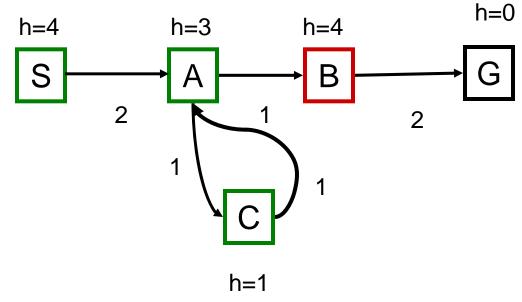
With cost 2+1+1+2=6

Greedy best-first is not optimal

Another Example



Another Example



Greedy best-first can get stuck in loops

Not complete
cs486/686 Lecture Slides 2008 (c) K. Larson and P. Poupart

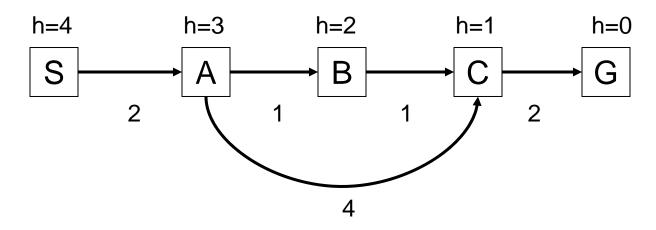
Properties of greedy search

- Not optimal!
- Not complete!
 - If we check for repeated states then we are ok
- Exponential space in worst case since need to keep all nodes in memory
- Exponential worst case time $O(b^m)$ where m is the maximum depth of the tree
 - If we choose a good heuristic then we can do much better

A* Search

- · Greedy best-first search is too greedy
 - It does not take into account the cost of the path so far!
- · Define
 - f(n)=g(n)+h(n)
 - -g(n) is the cost of the path to node n
 - h(n) is the heuristic estimate of the cost of reaching the goal from node n
- · A* search
 - Expand node in fringe (queue) with lowest f value

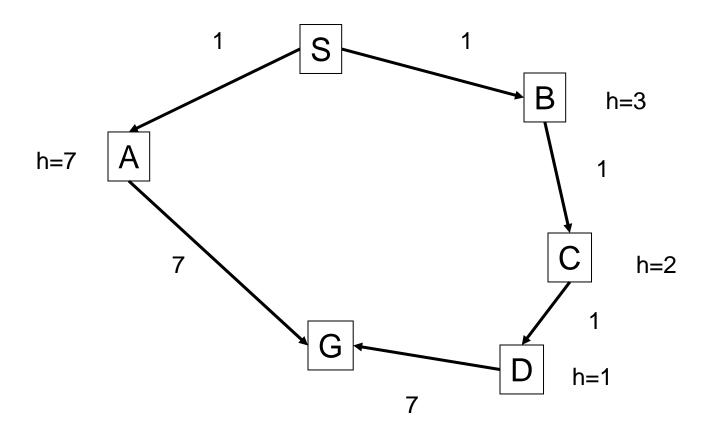
A* Example



- 1. Expand S
- 2. Expand A
- 3. Choose between B (f(B)=3+2=5) and C (f(C)=6+1=7)) expand B
- 4. Expand C
- 5. Expand G recognize it is the goal

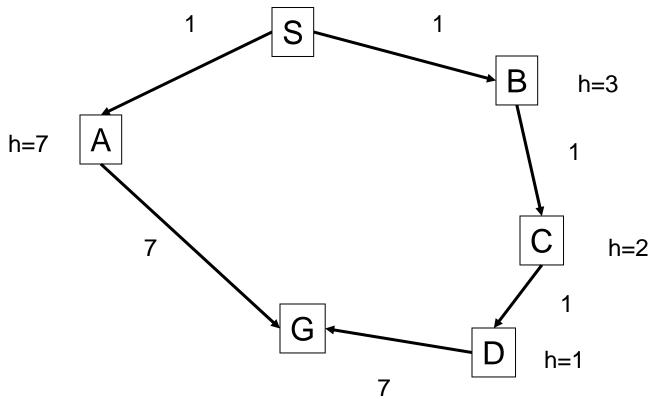
When should A* terminate?

As soon as we find a goal state?



When should A* terminate?

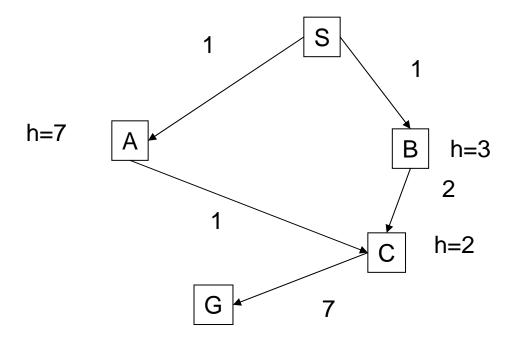
As soon as we find a goal state?



A* Terminates only when goal state is popped from the queue

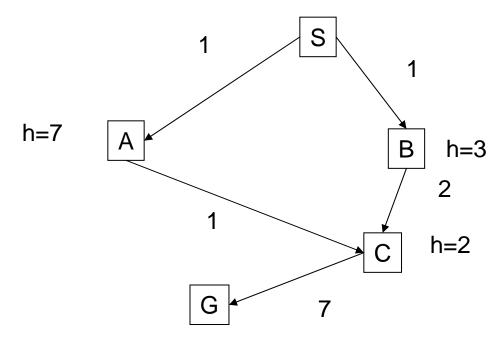
A* and revisiting states

What if we revisit a state that was already expanded?



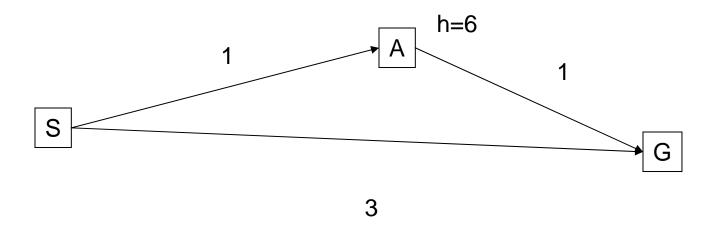
A* and revisiting states

What if we revisit a state that was already expanded?



If we allow states to be expanded again, we might get a better solution!

Is A* Optimal?



No. This example shows why not.

Admissible heuristics

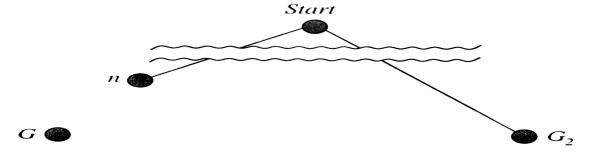
- Let h*(n) denote the true minimal cost to the goal from node n
- · A heuristic, h, is admissible if
 - $h(n) \le h^*(n)$ for all n
- Admissible heuristics never overestimate the cost to the goal
 - Optimistic

Optimality of A*

• If the heuristic is admissible then A* with tree-search is optimal

Let G be an optimal goal state, and $f(G) = f^* = g(G)$. Let G_2 be a suboptimal goal state, i.e. $f(G_2) = g(G_2) > f^*$. Assume for contradiction that A^* has selected G_2 from the queue. (This would terminate A* with a suboptimal solution)

Let n be a node that is currently a leaf node on an optimal path to G.



Because h is admissible, $f^* \ge f(n)$.

If n is not chosen for expansion over G_2 , we must have $f(n) \ge f(G_2)$ So, $f^* \ge f(G_2)$. Because $h(G_2)=0$, we have $f^* \ge g(G_2)$, contradiction 25

Optimality of A*

- For searching graphs we require something stronger than admissibility
 - Consistency (monotonicity):
 - $h(n) \leq cost(n,n')+h(n')$
 - Almost any admissible heuristic function will also be consistent
- A* graph-search with a consistent heuristic is optimal

Properties of A*

- · Complete if the heuristic is consistent
 - Along any path, f always increases) if a solution exists somewhere the f value will eventually get to its cost
- · Exponential time complexity in worst case
 - A good heuristic will help a lot here
 - O(bm) if the heuristic is perfect
- · Exponential space complexity

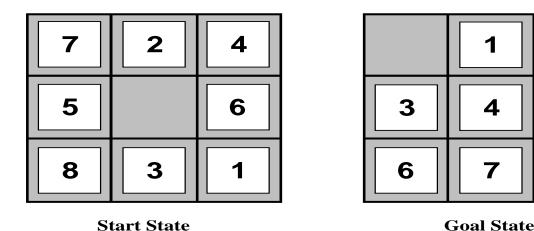
Memory-bounded heuristic search

- A* keeps most generated nodes in memory
 - On many problems A* will run out of memory
- Iterative deepening A* (IDA*)
 - Like IDS but change f-cost rather than depth at each iteration
- SMA* (Simplified Memory-Bounded A*)
 - Uses all available memory
 - Proceeds like A* but when it runs out of memory it drops the worst leaf node (one with highest f-value)
 - If all leaf nodes have the same f-value then it drops oldest and expands the newest
 - Optimal and complete if depth of shallowest goal node is less than memory size

Heuristic Functions

- A good heuristic function can make all the difference!
- · How do we get heuristics?
 - One approach is to think of an easier problem and let h(n) be the cost of reaching the goal in the easier problem

8-puzzle



Relax the game

- 1. Can move tile from position A to position B if A is next to B (ignore whether or not position is blank)
- 2. Can move tile from position A to position B if B is blank (ignore adjacency)
- 3. Can move tile from position A to position B

5

8

8-puzzle cont...

- · 3 leads to misplaced tile heuristic
 - To solve this problem need to move each tile into its final position
 - Number of moves = number of misplaced tiles
 - Admissible
- 1 leads to manhattan distance heuristic
 - To solve the puzzle need to slide each tile into its final position
 - Admissible

8-puzzle cont...

- h1=misplaced tiles
- h2=manhattan distance
- Note h2 dominates h1
 - $h1(n) \le h2(n)$ for all n
 - Which heuristic is best?

Designing heuristics

- Relaxing the problem (as just illustrated)
- Precomputing solution costs of subproblems and storing them in a pattern database
- Learning from experience with the problem class

Conclusion

- · What you should now know
 - Thoroughly understand A* and IDA*
 - Be able to trace simple examples of A* and IDA* execution
 - Understand admissibility of heuristics
 - Proof of completeness, optimality
 - Criticize greedy best-first search

Next class

- Constraint satisfaction (CSPs)
 - Russell and Norving, Chapter 5 (mainly sections 5.1-5.3)