Markov Networks

November 11, 2008 CS 486/686 University of Waterloo

Outline

- · Markov networks (a.k.a. Markov random fields)
- · Reading: Michael Jordan, Graphical Models, Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004.

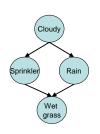
2

Cloudy

Rain

Recall Bayesian networks

- · Directed acyclic graph
- · Arcs often interpreted as causal relationships
- Joint distribution: product of conditional dist



Cloudy

3

Markov networks

- · Undirected graph
- Arcs simply indicate direct correlations
- Joint distribution: normalized product of potentials
- Popular in computer vision and natural language processing

Parameterization

Joint: normalized product of potentials $Pr(X) = 1/k \prod_i f_i(CLIQUE_i)$ = $1/k f_i(C,S,R) f_2(S,R,W)$

where k is a normalization constant $k = \sum_{X_i} \Pi_j f_j(CLIQUE_j)$ = $\sum_{C,S,R,W} f_1(C,S,R) f_2(S,R,W)$

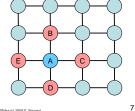
- · Potential:
 - Non-negative factor
 - Potential for each maximal clique in the graph
 - Entries: "likelihood strength" of different configurations.

Potential Example $f_1(C,S,R)$ csr 3 c~sr is more 2.5 cs~r likely than cs~r 5 c~sr c~s~r 5.5 0 ~csr 2.5 ~cs~r impossible ~c~sr 0 configuration ~c~s~r 6

Markov property

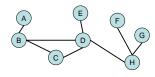
- · Markov property: variables depend only on their direct neighbours.
- · Markov blanket: set of direct neighbours

 $MB(A) = \{B,C,D,E\}$



Conditional Independence

- · X and Y are independent given Z iff there doesn't exist any path between X and Y that doesn't contain any of the variables in Z
- Exercise:
 - A.E?
 - A,E|D?
 - A,E|C?
 - A,E|B,C?



Interpretation

- · Markov property has a price:
 - Numbers are not probabilities
- What are potentials?
 - They are indicative of local correlations
- What do the numbers mean?
 - They are indicative of the likelihood of each configuration
 - Numbers are usually learnt from data since it is hard to specify them by hand given their lack of a clear interpretation

Applications

- Natural language processing:
 - Part of speech tagging
- · Computer vision
 - Image segmentation
- Any other application where there is no clear causal relationship

10

Image Segmentation

Segmentation of the Alps Kervrann, Heitz (1995) A Markov Random Field model-based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics, IEEE Transactions on Image Processing, vol 4, no 6, p 856-862

Image Segmentation

- Variables
 - Pixel features (e.g. intensities): X_{ii}
 - Pixel labels: Y_{ij}
- Correlations:
 - Neighbouring pixel labels are correlated
 - Label and features of a pixel are correlated
- Segmentation:
 - argmaxy Pr(Y|X)?

Inference

- · Markov nets: factored representation
 - Use variable elimination
- · P(X|E=e)?
 - Restrict all factors that contain E to e
 - Sumout all variables that are not X or in E
 - Normalize the answer

13

15

17

Parameter Learning

- · Maximum likelihood
 - $\theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)$
- Complete data
 - Convex optimization, but no closed form solution
 - Iterative techniques such as gradient descent
- Incomplete data
 - Non-convex optimization
 - EM algorithm

14

Maximum likelihood

- Let θ be the set of parameters and x_i be the ith instance in the dataset
- Optimization problem:

 $\begin{array}{l} -\theta^{\star} = \operatorname{argmax}_{\theta} \; P(\operatorname{data}|\theta) \\ = \operatorname{argmax}_{\theta} \; \Pi_{i} \; \Pr(\mathbf{x}_{i}|\theta) \\ = \operatorname{argmax}_{\theta} \; \Pi_{i} \; \prod_{j} \; f(\mathbf{X}[j] = \mathbf{x}_{i}[j]) \\ \sum_{\mathbf{X}} \; \Pi_{j} \; f(\mathbf{X}[j] = \mathbf{x}_{i}[j]) \end{array}$ where $\mathbf{X}[j]$ is the clique of variables that potential j depends on and $\mathbf{x}[j]$ is a variable assignment for that clique

Maximum likelihood

• Let $\theta_x = f(X=x)$

problem

Optimization continued:

Optimization continued:
$$-\theta^* = \operatorname{argmax}_{\theta} \Pi_i \frac{\Pi_j \theta_{X[j]}}{\Sigma_X \Pi_j \theta_{X[j]}}$$

$$= \operatorname{argmax}_{\theta} \log \Pi_i \frac{\Pi_j \theta_{X[j]}}{\Sigma_X \Pi_j \theta_{X[j]}}$$

= $\operatorname{argmax}_{\theta} \Sigma_{i} \Sigma_{j} \log \theta_{X_{i}[j]}$ - $\log \Sigma_{X} \Pi_{j} \theta_{X_{i}[j]}$ · This is a non-convex optimization

16

Maximum likelihood

- Substitute $\lambda = \log \theta$ and the problem becomes convex:
 - λ^* = argmax_{λ} Σ_i Σ_i $\lambda_{X_i[i]}$ $\log \Sigma_X$ e Σ_i $\lambda_{X_i[j]}$
- Possible algorithms:
 - Gradient descent
 - Conjugate gradient

Next Class

- · Feature-based Markov networks
- Conditional random fields

18