October 30, 2008
CS 486/686
University of Waterloo

Outline

- Ensemble Learning
 - Bagging
 - Boosting

· Reading: R&N Sect 18.4

Supervised Learning

- So far...
 - Decision trees
 - Statistical learning
 - Bayesian Learning
 - Maximum a posteriori
 - Maximum likelihood
- · Which technique should we pick?

- Sometimes each learning technique yields a different hypothesis
- But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

Analogies:

- Elections combine voters' choices to pick a good candidate
- Committees combine experts' opinions to make better decisions

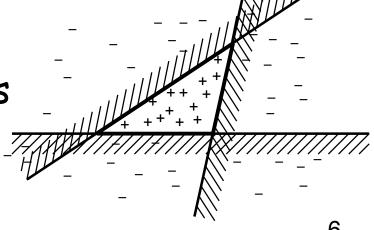
· Intuitions:

- Individuals often make mistakes, but the "majority" is less likely to make mistakes.
- Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.

 Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis

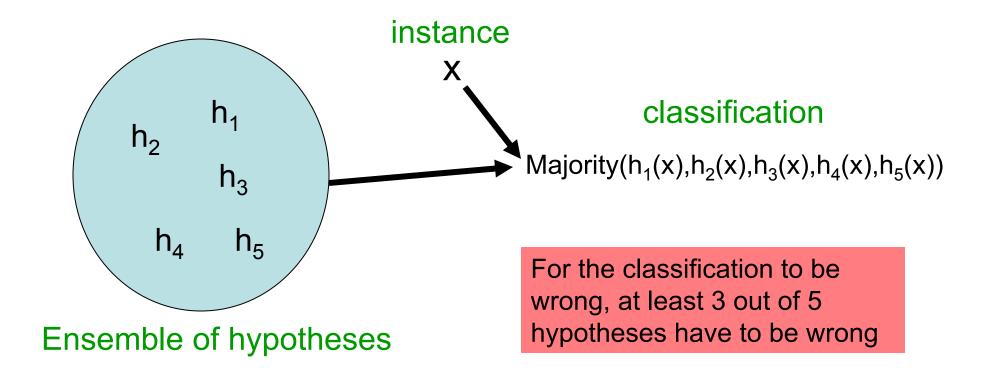
Can enlarge hypothesis space

- Perceptrons
 - · linear separators
- Ensemble of perceptrons
 - polytope



Bagging

Majority Voting



Bagging

- Assumptions:
 - Each hi makes error with probability p
 - The hypotheses are independent
- · Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k}$ p^k(1-p)^{n-k}
 - Majority makes an error: $\Sigma_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With n=5, p=0.1 \rightarrow err(majority) < 0.01

Weighted Majority

- In practice
 - Hypotheses rarely independent
 - Some hypotheses have less errors than others
- · Let's take a weighted majority
- Intuition:
 - Decrease weight of correlated hypotheses
 - Increase weight of good hypotheses

Boosting

- · Most popular ensemble technique
- · Computes a weighted majority
- · Can "boost" a "weak learner"
- · Operates on a weighted training set

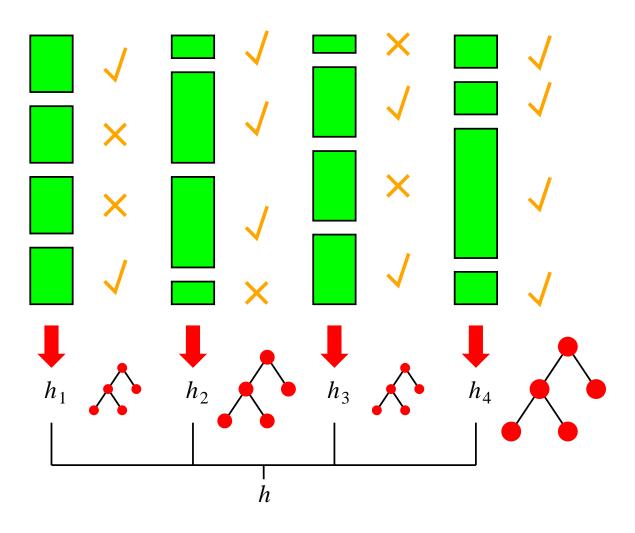
Weighted Training Set

- · Learning with a weighted training set
 - Supervised learning → minimize train. error
 - Bias algorithm to learn correctly instances with high weights
- Idea: when an instance is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly

Boosting Framework

- Set all instance weights w_x to 1
- Repeat
 - $h_i \leftarrow learn(dataset, weights)$
 - Increase w_x of misclassified instances x
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h_i's with weights w_i proportional to the accuracy of h_i

Boosting Framework



AdaBoost (Adaptive Boosting)

w: vector of N instance weights

z: vector of M hypoth. weights

- $w_j \leftarrow 1/N \ \forall_j$
- For m=1 to M do
 - $h_m \leftarrow learn(dataset, w)$
 - err $\leftarrow 0$
 - For each (x_i, y_i) in dataset do
 - If $h_m(x_j) \neq y_j$ then err \leftarrow err + w_j
 - For each (x_j,y_j) in dataset do
 - If $h_m(x_j) = y_j$ then $w_j \leftarrow w_j$ err / (1-err)
 - $w \leftarrow normalize(w)$
 - $z_m \leftarrow \log [(1-err) / err]$
- Return weighted-majority(h,z)

What can we boost?

 Weak learner: produces hypotheses at least as good as random classifier.

Examples:

- Rules of thumb
- Decision stumps (decision trees of one node)
- Perceptrons
- Naïve Bayes models

Boosting Paradigm

Advantages

- No need to learn a perfect hypothesis
- Can boost any weak learning algorithm
- Boosting is very simple to program
- Good generalization

· Paradigm shift

- Don't try to learn a perfect hypothesis
- Just learn simple rules of thumbs and boost them

Boosting Paradigm

 When we already have a bunch of hypotheses, boosting provides a principled approach to combine them

- Useful for
 - Sensor fusion
 - Combining experts

Boosting Applications

- Any supervised learning task
 - Spam filtering
 - Speech recognition/natural language processing
 - Data mining
 - Etc.

Next Class

- · Next Class:
 - ·Midterm