Statistical Learning (part II)

October 28, 2008 CS 486/686 University of Waterloo

Outline

- · Learning from incomplete Data
 - EM algorithm
- · Reading: R&N Ch 20.3

CS486/686 Lecture Slides (c) 2008 P. Poupart

2

Incomplete data

- · So far...
 - Values of all attributes are known
 - Learning is relatively easy
- But many real-world problems have hidden variables (a.k.a latent variables)
 - Incomplete data
 - Values of some attributes missing

CS486/686 Lecture Slides (c) 2008 P. Poupart

3

Unsupervised Learning

- Incomplete data → unsupervised learning
- Examples:
 - Categorisation of stars by astronomers
 - Categorisation of species by anthropologists
 - Market segmentation for marketing
 - Pattern identification for fraud detection
 - Research in general!

CS486/686 Lecture Slides (c) 2008 P. Pourout

2

Maximum Likelihood Learning

- ML learning of Bayes net parameters:
 - For $\theta_{V=true,pa(V)=\mathbf{v}}$ = Pr(V=true|par(V) = \mathbf{v})

 - Assumes all attributes have values...
- What if values of some attributes are missing?

CS486/686 Lecture Slides (c) 2008 P. Poupart

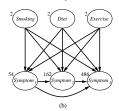
5

"Naive" solutions for incomplete data

- Solution #1: Ignore records with missing values
 - But what if all records are missing values (i.e., when a variable is hidden, none of the records have any value for that variable)
- Solution #2: Ignore hidden variables
 - Model may become significantly more complex!

CS486/686 Lecture Slides (c) 2008 P. Poupart

Heart disease example



- a) simpler (i.e., fewer CPT parameters)
- b) complex (i.e., lots of CPT parameters)

"Direct" maximum likelihood

- Solution 3: maximize likelihood directly
 - Let Z be hidden and E observable
 - h_{ML} = $argmax_h P(e|h)$
 - = $argmax_h \Sigma_Z P(e,Z|h)$
 - = $argmax_h \Sigma_Z \Pi_i CPT(V_i)$
 - = $argmax_h log \Sigma_Z \Pi_i CPT(V_i)$
 - Problem: can't push log past sum to linearize product

8

Expectation-Maximization (EM)

- · Solution #4: EM algorithm
 - Intuition: if we knew the missing values, computing \mathbf{h}_{ML} would be trival
- \cdot Guess h_{ML}
- Iterate
 - Expectation: based on h_{ML}, compute
 - expectation of the missing values
 Maximization: based on expected missing values, compute new estimate of h_{MI}

9

Expectation-Maximization (EM)

- More formally:
 - Approximate maximum likelihood
 - Iteratively compute:

 $h_{i+1} = \operatorname{argmax}_h \Sigma_Z P(Z|h_i,e) \log P(e,Z|h)$

Expectation

Maximization

10

Expectation-Maximization (EM)

- Derivation
 - $\begin{array}{l} \text{Def Nation} \\ -\log P(\textbf{e}|\textbf{h}) = \log \left[P(\textbf{e},\textbf{Z}|\textbf{h}) / P(\textbf{Z}|\textbf{e},\textbf{h})\right] \\ = \log P(\textbf{e},\textbf{Z}|\textbf{h}) \log P(\textbf{Z}|\textbf{e},\textbf{h}) \\ = \Sigma_{\textbf{Z}} P(\textbf{Z}|\textbf{e},\textbf{h}) \log P(\textbf{e},\textbf{Z}|\textbf{h}) \\ \Sigma_{\textbf{Z}} P(\textbf{Z}|\textbf{e},\textbf{h}) \log P(\textbf{Z}|\textbf{e},\textbf{h}) \\ \geq \Sigma_{\textbf{Z}} P(\textbf{Z}|\textbf{e},\textbf{h}) \log P(\textbf{e},\textbf{Z}|\textbf{h}) \end{array}$
- · EM finds a local maximum of $\Sigma_7 P(Z|e,h) \log P(e,Z|h)$ which is a lower bound of log P(e|h)

Expectation-Maximization (EM)

- · Log inside sum can linearize product
 - \tilde{h}_{i+1} = argmax_h $\Sigma_Z P(Z|h_i,e) \log P(e,Z|h)$
 - = $\operatorname{argmax}_{h} \Sigma_{z} P(\mathbf{Z}|h_{i},e) \log \Pi_{j} CPT_{j}$ = $\operatorname{argmax}_{h} \Sigma_{z} P(\mathbf{Z}|h_{i},e) \Sigma_{j} \log CPT_{j}$
- · Monotonic improvement of likelihood - $P(e|h_{i+1}) \ge P(e|h_i)$

Candy Example

- Suppose you buy two bags of candies of unknown type (e.g. flavour ratios)
- You plan to eat sufficiently many candies of each bag to learn their type
- Ignoring your plan, your roommate mixes both bags...
- How can you learn the type of each bag despite being mixed?

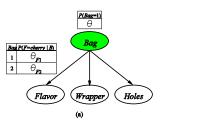
CS486/686 Lecture Slides (c) 2008 P. Poupar

13

15

Candy Example

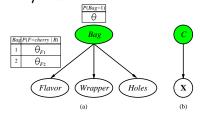
· "Bag" variable is hidden



486/686 Lecture Slides (c) 2008 P. Poupart

Unsupervised Clustering

- · "Class" variable is hidden
- · Naïve Bayes model



ture Slides (c) 2008 P. Poupart

Candy Example

- Unknown Parameters:
 - $-\theta_i = P(Bag=i)$
 - θ_{Fi} = P(Flavour=cherry|Bag=i)
 - θ_{Wi} = P(Wrapper=red|Bag=i)
 - θ_{Hi} = P(Hole=yes|Bag=i)
- When eating a candy:
 - F, W and H are observable
 - B is hidden

CS486/686 Lecture Slides (c) 2008 P. Poupart

16

14

Candy Example

- · Let true parameters be:
 - θ =0.5, θ_{F1} = θ_{W1} = θ_{H1} =0.8, θ_{F2} = θ_{W2} = θ_{H2} =0.3
- · After eating 1000 candies:

	W=red		W=green	
	H=1	H=0	H=1	H=0
F=cherry	273	93	104	90
F=lime	79	100	94	167

CS486/686 Lecture Slides (c) 2008 P. Pourset

17

Candy Example

- · EM algorithm
- Guess h₀:
 - θ =0.6, θ_{F1} = θ_{W1} = θ_{H1} =0.6, θ_{F2} = θ_{W2} = θ_{H2} =0.4
- · Alternate:
 - Expectation: expected # of candies in each bag
 - Maximization: new parameter estimates

CS486/686 Lecture Slides (c) 2008 P. Poupart

Candy Example

- Expectation: expected # of candies in each bag
 - #[Bag=i] = $\Sigma_i P(B=i|f_i,w_i,h_i)$
 - Compute P(B=i|fj,wj,hj) by variable elimination (or any other inference alg.)
- · Example:
 - #[Bag=1] = 612
 - #[Bag=2] = 388

CS486/686 Lecture Slides (c) 2008 P. Poupart

19

Candy Example

- Maximization: relative frequency of each bag
 - $-\theta_1 = 612/1000 = 0.612$
 - $-\theta_2 = 388/1000 = 0.388$

CS486/686 Lecture Slides (c) 2008 P. Poupart

20

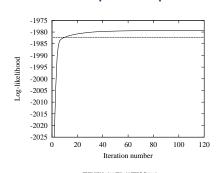
Candy Example

- Expectation: expected # of cherry candies in each bag
 - #[B=i,F=cherry] = Σ_i P(B=i| f_i =cherry, w_i , h_i)
 - Compute P(B=i|fj=cherry,wj,hj) by variable elimination (or any other inference alg.)
- · Maximization:
 - $-\theta_{F1} = \#[B=1,F=cherry] / \#[B=1] = 0.668$
 - θ_{F2} = #[B=2,F=cherry] / #[B=2] = 0.389

CS486/686 Lecture Slides (c) 2008 P. Poupart

21

Candy Example



22

Bayesian networks

- · EM algorithm for general Bayes nets
- Expectation:
 - $\#[V_i=v_{ij},Pa(V_i)=pa_{ik}]$ = expected frequency
- · Maximization:
 - $-~\theta_{\mathsf{v}_{ij},\mathsf{p}\mathsf{a}_{ik}} = \#[\mathsf{V}_i \mathtt{=} \mathsf{v}_{ij},\!\mathsf{Pa}(\mathsf{V}_i)\mathtt{=}\mathsf{pa}_{ik}]~/~\#[\mathsf{Pa}(\mathsf{V}_i)\mathtt{=}\mathsf{pa}_{ik}]$

CS486/686 Lecture Slides (c) 2008 P. Poupar

23

Next Class

- · Next Class:
 - ·Ensemble Learning
 - ·Russell and Norvig Sect. 18.4

8486/686 Lecture Slides (c) 2008 P. Poupart