Lecture 12 Decision Networks

October 16, 2008 CS 486/686

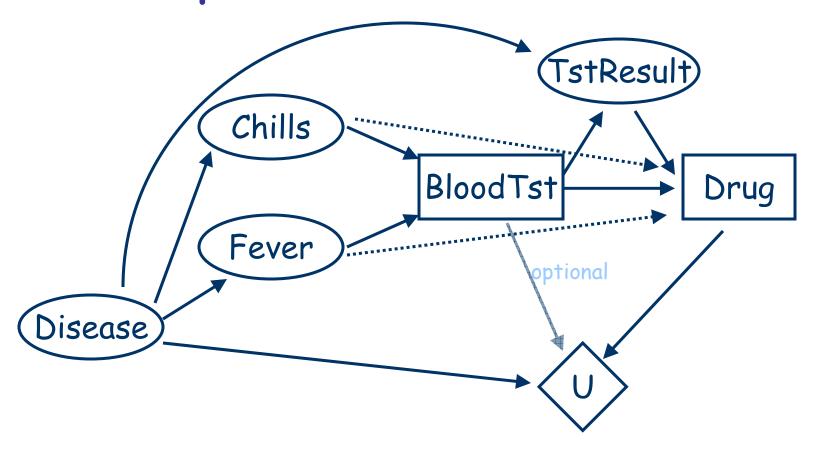
Outline

- Decision Networks
 - Aka Influence diagrams
- Value of information
- · Russell and Norvig: Sect 16.5-16.6

Decision Networks

- Decision networks (also known as influence diagrams) provide a way of representing sequential decision problems
 - basic idea: represent the variables in the problem as you would in a BN
 - add decision variables variables that you "control"
 - add utility variables how good different states are

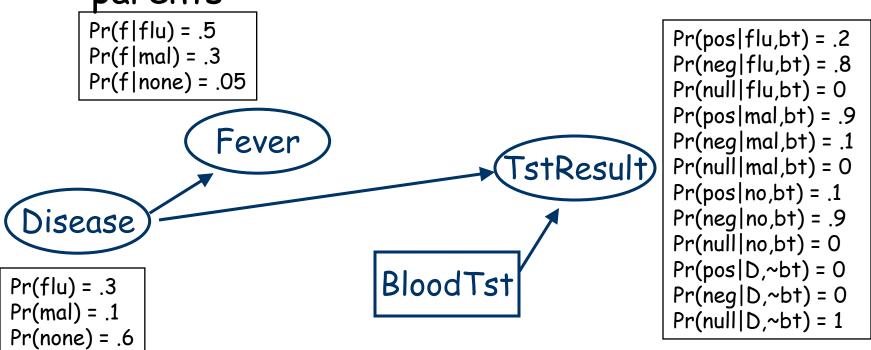
Sample Decision Network



Decision Networks: Chance Nodes

· Chance nodes

- random variables, denoted by circles
- as in a BN, probabilistic dependence on parents



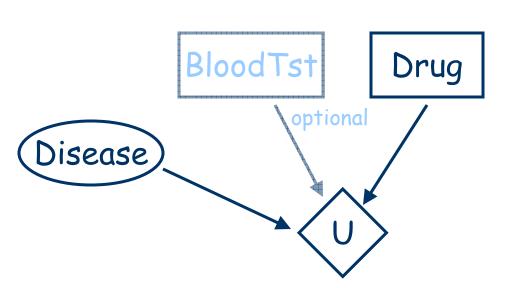
Decision Networks: Decision Nodes

Decision nodes

- variables set by decision maker, denoted by squares
- parents reflect information available at time decision is to be made
- Example: the actual values of Ch and Fev will be observed before the decision to take test must be made
 - agent can make different decisions for each instantiation of parents (i.e., policies)

Decision Networks: Value Node

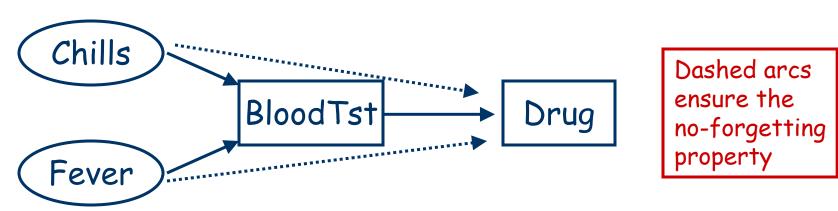
- · Value node
 - specifies utility of a state, denoted by a diamond
 - utility depends only on state of parents of value node
 - generally: only one value node in a decision network
- Utility depends only on disease and drug



U(fludrug, flu) = 20 U(fludrug, mal) = -300 U(fludrug, none) = -5 U(maldrug, flu) = -30 U(maldrug, mal) = 10 U(maldrug, none) = -20 U(no drug, flu) = -10 U(no drug, mal) = -285 U(no drug, none) = 30

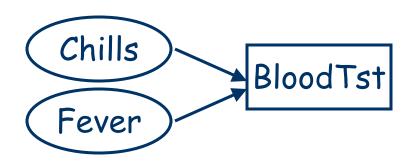
Decision Networks: Assumptions

- Decision nodes are totally ordered
 - decision variables D₁, D₂, ..., D_n
 - decisions are made in sequence
 - e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
 - any information available when decision D_i is made is available when decision D_j is made (for i < j)
 - thus all parents of Di are parents of Di



Policies

- Let $Par(D_i)$ be the parents of decision node D_i
 - $Dom(Par(D_i))$ is the set of assignments to parents
- A policy δ is a set of mappings δ_i , one for each decision node D_i
 - $-\delta_i:Dom(Par(D_i))\rightarrow Dom(D_i)$
 - δ_i associates a decision with each parent asst for D_i
- · For example, a policy for BT might be:
 - $-\delta_{BT}(c,f) = bt$
 - $-\delta_{BT}(c,\sim f) = \sim bt$
 - $-\delta_{BT}(\sim c,f) = bt$
 - $-\delta_{BT}(\sim c, \sim f) = \sim bt$



Value of a Policy

- Value of a policy δ is the expected utility given that decision nodes are executed according to δ
- Given asst ${\bf x}$ to the set ${\bf X}$ of all chance variables, let $\delta({\bf x})$ denote the asst to decision variables dictated by δ
 - e.g., asst to D_1 determined by it's parents' asst in x
 - e.g., asst to D_2 determined by it's parents' asst in x along with whatever was assigned to D_1
 - etc.
- Value of δ :

$$EU(\delta) = \Sigma_X P(X, \delta(X)) U(X, \delta(X))$$

Optimal Policies

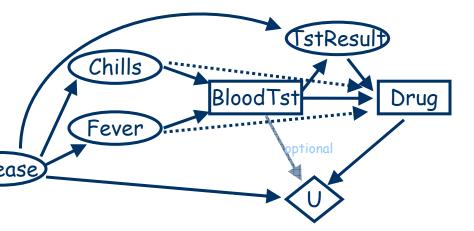
- An optimal policy is a policy δ^* such that $EU(\delta^*) \ge EU(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- We can also use the structure of the decision network to use variable elimination to aid in the computation

Computing the Best Policy

- We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
 - for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), compute the expected value of choosing that value of D

 set policy choice for each value of parents to be the value of D that has max value

- eg: $\delta_D(c,f,bt,pos) = md$ Disease



Computing the Best Policy

- Next compute policy for BT given policy $\delta_D(C,F,BT,TR)$ just determined for Drug
 - since $\delta_D(C,F,BT,TR)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
 - i.e., for any instantiation of parents, value of Drug is fixed by policy $\delta_{\mathcal{D}}$
 - this means we can solve for optimal policy for BT just as before
 - only uninstantiated vars are random vars (once we fix *its* parents)

Computing the Best Policy

- How do we compute these expected values?
 - suppose we have asst <c,f,bt,pos> to parents of Drug
 - we want to compute EU of deciding to set Drug = md
 - we can run variable elimination!
- Treat C,F,BT,TR,Dr as evidence
 - this reduces factors (e.g., U restricted to bt,md: depends on Dis)
 - eliminate remaining variables (e.g., only Disease left)
 - left with factor: $EU(md|c,f,bt,pos) = \Sigma_{Dis} P(Dis|c,f,bt,pos,md) U(Dis,bt,md)$
- We now know EU of doing
 Dr=md when c,f,bt,pos true
 Can do same for fd,no to decide which is best
 Disease
 Fever
 Drug
 Total total true
 Drug
 Total total true
 Drug
 Tever
 Disease
 Total total true
 Drug
 Total total true
 Drug
 Total true
 Total true
 Drug
 Total true
 Total true
 Drug
 Total true
 Total tru

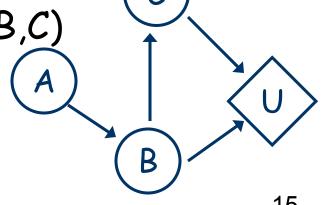
Computing Expected Utilities

- · The preceding illustrates a general phenomenon
 - computing expected utilities with BNs is quite easy
 - utility nodes are just factors that can be dealt with using variable elimination

$$EU = \Sigma_{A,B,C} P(A,B,C) U(B,C)$$

= $\Sigma_{A,B,C} P(C|B) P(B|A) P(A) U(B,C)$

· Just eliminate variables in the usual way



Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
 - no-forgetting means that all other decisions are instantiated (they must be parents)
 - its easy to compute the expected utility using VE
 - the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
 - policy: choose max decision for each parent instant'n

Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
 - for each instantiation of its parents we now know what value the decision should take
 - just treat policy as a new CPT: for a given parent instantiation x, D gets $\delta(x)$ with probability 1 (all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
 - it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

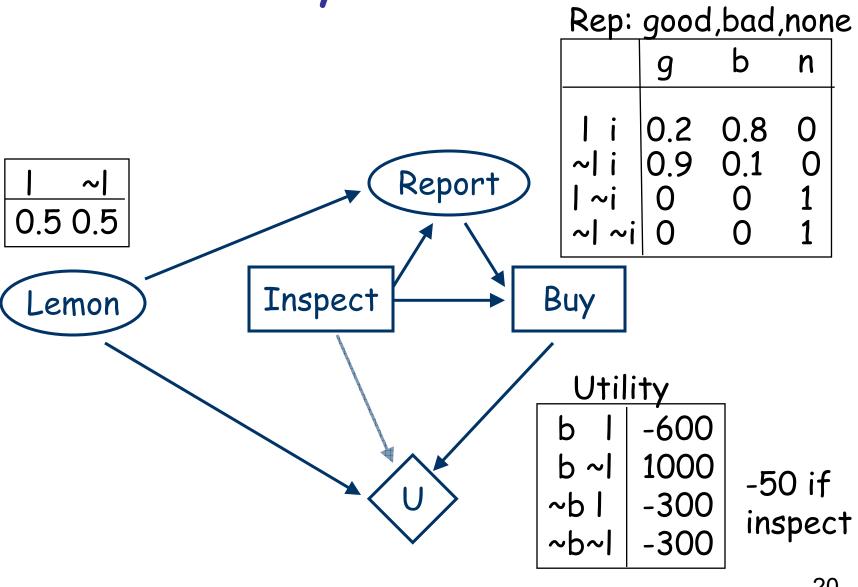
Decision Network Notes

- Decision networks commonly used by decision analysts to help structure decision problems
- Much work put into computationally effective techniques to solve these
 - common trick: replace the decision nodes with random variables at outset and solve a plain Bayes net (a subtle but useful transformation)
- · Complexity much greater than BN inference
 - we need to solve a number of BN inference problems
 - one BN problem for each setting of decision node parents and decision node value

A Decision Net Example

- Setting: you want to buy a used car, but there's
 a good chance it is a "lemon" (i.e., prone to
 breakdown). Before deciding to buy it, you can
 take it to a mechanic for inspection. S/he will
 give you a report on the car, labeling it either
 "good" or "bad". A good report is positively
 correlated with the car being sound, while a bad
 report is positively correlated with the car
 being a lemon.
- The report costs \$50 however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

Car Buyer's Network



Evaluate Last Decision: Buy (1)

- EU(B|I,R) = Σ_L P(L|I,R,B) U(L,I,B)
- I = i, R = g:
 - EU(buy) = P(||i,g,buy) U(|,i,buy) + P(~||i,g,buy) U(~|,i,buy)

```
= .18*-650 + .82*950 = 662
```

- EU(~buy) = P(||i,g,~buy) U(|,i,~buy) + P(~||i,g,~buy) U(~|,i,~buy) = -300 - 50 = -350 (-300 indep. of lemon)
- So optimal $\delta_{Buy}(i,g) = buy$

Evaluate Last Decision: Buy (2)

- I = i, R = b:

 EU(buy) = P(I|i,b,buy) U(I,i,buy) + P(~I|i,b,buy) U(~I,i,buy)
 = .89*-650 + .11*950 = -474
 EU(~buy) = P(I|i,b,~buy) U(I,i,~buy) + P(~I|i, b,~buy) U(~I,i,~buy)
 = -300 50 = -350 (-300 indep. of lemon)
 So entimal Security
 = -474
 -300 indep. of lemon)
 -300 50 = -350 (-300 indep. of lemon)
 - So optimal $\delta_{Buy}(i,b) = \sim buy$

Evaluate Last Decision: Buy (3)

- I = ~i, R = n
 EU(buy) = P(||~i,n,buy) U(|,~i,buy) + P(~||~i,n,buy) U(~|,~i,buy)
 = .5*-600 + .5*1000 = 200
 EU(~buy) = P(||~i,n,~buy) U(|,~i,~buy) + P(~||~i,n,~buy) U(~|,~i,~buy)
 = -300 (-300 indep. of lemon)
 - So optimal δ_{Buy} (~i,n) = buy
- So optimal policy for Buy is:
 - $-\delta_{Buy}(i,g) = buy$; $\delta_{Buy}(i,b) = \sim buy$; $\delta_{Buy}(\sim i,n) = buy$
- Note: we don't bother computing policy for (i,~n), (~i, g), or (~i, b), since these occur with probability 0

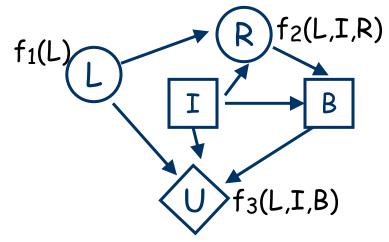
Using Variable Elimination

Factors: $f_1(L) f_2(L,I,R)$ $f_3(L,I,B)$

Query: EU(B)?

Evidence: I = i, R = g

Elim. Order: L



Restriction: replace $f_2(L,I,R)$ by $f_4(L) = f_2(L,i,g)$ replace $f_3(L,I,B)$ by $f_5(L,B) = f_2(L,i,B)$

Step 1: Add $f_6(B) = \sum_{L} f_1(L) f_4(L) f_5(L,B)$

Remove: $f_1(L)$, $f_4(L)$, $f_5(L,B)$

Last factor: $f_6(B)$ is the unscaled expected utility of buy and ~buy. Select action with highest (unscaled) expected utility.

Repeat for EU(B|i,b), $EU(B|\sim i,n)$

Alternatively

- N.B.: variable elimination for decision networks computes unscaled expected utility...
- Can still pick best action, since utility scale is not important (relative magnitude is what matters)
- If we want exact expected utility:
 - Let X = parents(U)
 - EU(dec|evidence) = $\Sigma_X Pr(X|dec,evidence) U(X)$
 - Compute Pr(X | dec, evidence) by variable elimination
 - Multiply Pr(X | dec, evidence) by U(X)
 - Summout X

Evaluate First Decision: Inspect

- EU(I) = $\Sigma_{L,R}$ P(L,R|i) U(L,i, δ_{Buy} (I,R))
 - where P(R,L|i) = P(R|L,i)P(L|i)
 - EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350) = 187.5
 - EU(~i) = P(n,l|~i) U(l,~i,buy) + P(n,~l|~i) U(~l,~i,buy) = .5*-600 + .5*1000 = 200
 - So optimal $\delta_{Inspect}$ () = ~inspect

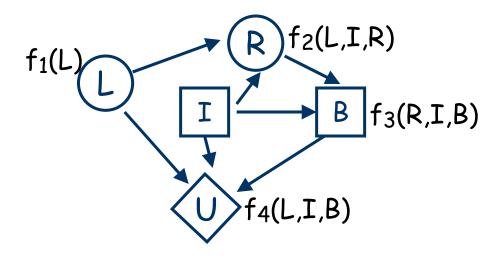
	P(R,L i)	$\delta_{\mathcal{B}_{UY}}$	U(L, i, δ _{Buy})
g,l	0.1	buy	-600 - 50 = -650
b,l	0.4	~buy	-300 - 50 = -350
g,~l	0.45	buy	1000 - 50 = 950
b,~l	0.05	~buy	-300 - 50 = -350

Using Variable Elimination

Factors: $f_1(L)$ $f_2(L,I,R)$ $f_3(R,I,B)$ $f_4(L,I,B)$

Query: EU(I)? Evidence: none

Elim. Order: L, R, B



N.B. $f3(R,I,B) = \delta_B(R,I)$

Step 1: Add $f_5(R,I,B) = \Sigma_L f_1(L) f_2(L,I,R) f_4(L,I,B)$

Remove: $f_1(L) f_2(L,I,R) f_4(L,I,B)$

Step 2: Add $f_6(I,B) = \Sigma_R f_3(R,I,B) f_5(R,I,B)$

Remove: $f_3(R,I,B) f_5(R,I,B)$

Step 3: Add $f_7(I) = \Sigma_B f_6(I,B)$

Remove: $f_6(I,B)$

Last factor: $f_7(I)$ is the expected utility of inspect and ~inspect. Select action with highest expected utility.

Value of Information

- So optimal policy is: don't inspect, buy the car
 - EU = 200
 - Notice that the EU of inspecting the car, then buying it iff you get a good report, is 237.5 less the cost of the inspection (50). So inspection not worth the improvement in EU.
 - Suppose inspection cost \$25: would it be worth it?
 - EU = 237.5 25 = 212.5 > EU(~i)
 - The expected value of information associated with inspection is 37.5 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (~buy if bad).
 - You should be willing to pay up to \$37.5 for the report

Next Class

- Machine Learning (Chapter 18)
 - Inductive learning
 - Decision trees