# Lecture 11 Utility Theory

October 14, 2008 CS 486/686

### Outline

- Decision making
  - Utility Theory
  - Decision Trees
- Chapter 16 in R&N
  - Note: Some of the material we are covering today is not in the textbook

## Decision Making under Uncertainty

- I give robot a planning problem: I want coffee
  - but coffee maker is broken: robot reports
     "No plan!"
- If I want more robust behavior if I want robot to know what to do when my primary goal can't be satisfied - I should provide it with some indication of my preferences over alternatives
  - e.g., coffee better than tea, tea better than water, water better than nothing, etc.

## Decision Making under Uncertainty

- But it's more complex:
  - it could wait 45 minutes for coffee maker to be fixed
  - what's better: tea now? coffee in 45 minutes?

### Preferences

- A preference ordering > is a ranking of all possible states of affairs (worlds) S
  - these could be outcomes of actions, truth assts, states in a search problem, etc.
  - s ≥ t: means that state s is at least as good as t
  - s > t: means that state s is strictly preferred to t
  - s~t: means that the agent is indifferent between states s and t

#### Preferences

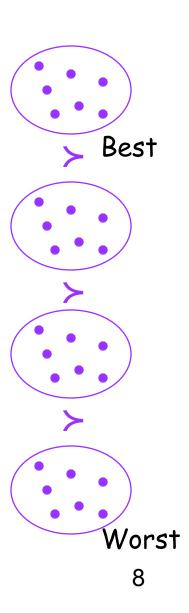
- If an agent's actions are deterministic then we know what states will occur
- If an agent's actions are not deterministic then we represent this by lotteries
  - Probability distribution over outcomes
  - Lottery L=[ $p_1,s_1;p_2,s_2;...;p_n,s_n$ ]
  - $s_1$  occurs with prob  $p_1$ ,  $s_2$  occurs with prob  $p_2$ ,...

#### Axioms

- · Orderability: Given 2 states A and B
  - $(A > B) \vee (B > A) \vee (A \sim B)$
- Transitivity: Given 3 states, A, B, and C
  - $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$
- · Continuity:
  - $A > B > C \Rightarrow \exists p [p,A;1-p,C] \sim B$
- Substitutability:
  - $-A \sim B \rightarrow [p,A;1-p,C] \sim [p,B;1-p,C]$
- Monotonicity:
  - $A > B \Rightarrow (p \ge q \Leftrightarrow [p,A;1-p,B] \ge [q,A;1-q,B]$
- Decomposibility:
  - $[p,A;1-p,[q,B;1-q,C]] \sim [p,A;(1-p)q,B;(1-p)(1-q),C]$

## Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements" (it is a weak ordering)
- E.g., why transitivity?
  - Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee
  - If you prefer X to Y, you'll trade me Y plus \$1 for X
  - I can construct a "money pump" and extract arbitrary amounts of money from you



## Decision Problems: Certainty

- · A decision problem under certainty is:
  - a set of decisions D
    - e.g., paths in search graph, plans, actions, etc.
  - a set of outcomes or states S
    - · e.g., states you could reach by executing a plan
  - an *outcome function*  $f: D \rightarrow S$ 
    - the outcome of any decision
  - a preference ordering ≥ over S
- A solution to a decision problem is any  $d^* \in D$  such that  $f(d^*) \ge f(d)$  for all  $d \in D$

## Decision Making under Uncertainty



- Suppose actions don't have deterministic outcomes
  - e.g., when robot pours coffee, it spills 20% of time, making a mess
  - preferences: c, ~mess > ~c,~mess > ~c, mess
- · What should robot do?
  - decision *getcoffee* leads to a good outcome and a bad outcome with some probability
  - decision donothing leads to a medium outcome for sure
- Should robot be optimistic? pessimistic?
- · Really odds of success should influence decision
  - but how?

### Utilities

- Rather than just ranking outcomes, we must quantify our degree of preference
  - e.g., how much more important is c than ~mess
- A utility function U:S  $\rightarrow \mathbb{R}$  associates a real-valued utility with each outcome.
  - U(s) measures your *degree* of preference for s
- Note: U induces a preference ordering  $\geq_U$  over 5 defined as:  $s \geq_U t$  iff  $U(s) \geq U(t)$ 
  - obviously ≽∪ will be reflexive, transitive,
     connected

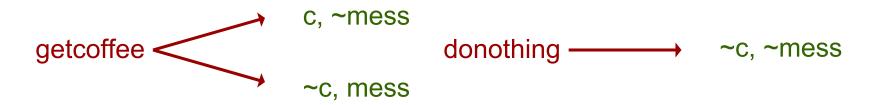
# Expected Utility

- Under conditions of uncertainty, each decision d induces a distribution Pr<sub>d</sub> over possible outcomes
  - Pr<sub>d</sub>(s) is probability of outcome s under decision d

The expected utility of decision d is defined

$$EU(d) = \sum_{s \in S} \Pr_d(s)U(s)$$

# Expected Utility



When robot pours coffee, it spills 20% of time, making a mess

If 
$$U(c,\sim ms) = 10$$
,  $U(\sim c,\sim ms) = 5$ ,  $U(\sim c,ms) = 0$ ,  
then  $EU(getcoffee) = (0.8)(10)+(0.2)(0)=8$   
and  $EU(donothing) = 5$ 

If 
$$U(c,\sim ms) = 10$$
,  $U(\sim c,\sim ms) = 9$ ,  $U(\sim c,ms) = 0$ ,  
then  $EU(getcoffee) = (0.8)(10)+(0.2)(0)=8$   
and  $EU(donothing) = 9$ 

# The MEU Principle

- The principle of maximum expected utility (MEU) states that the optimal decision under conditions of uncertainty is that with the greatest expected utility.
- · In our example
  - if my utility function is the first one, my robot should get coffee
  - if your utility function is the second one, your robot should do nothing

## Decision Problems: Uncertainty

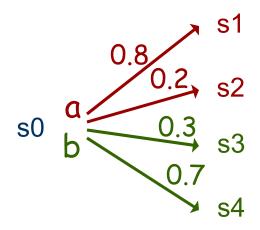
- A decision problem under uncertainty is:
  - a set of decisions D
  - a set of *outcomes* or states S
  - an *outcome function*  $Pr: D \rightarrow \Delta(S)$ 
    - $\Delta(S)$  is the set of distributions over S (e.g.,  $Pr_d$ )
  - a utility function U over S
- A solution to a decision problem under uncertainty is any  $d^* \in D$  such that  $EU(d^*) \ge EU(d)$  for all  $d \in D$
- Again, for single-shot problems, this is trivial

# Expected Utility: Notes

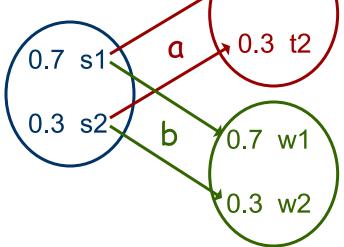
- Note that this viewpoint accounts for both:
  - uncertainty in action outcomes

- uncertainty in state of knowledge

- any combination of the two



Stochastic actions



Uncertain knowledge

# Expected Utility: Notes

- Why MEU? Where do utilities come from?
  - underlying foundations of utility theory tightly couple utility with action/choice
  - a utility function can be determined by asking someone about their preferences for actions in specific scenarios (or "lotteries" over outcomes)
- Utility functions needn't be unique
  - if I multiply U by a positive constant, all decisions have same relative utility
  - if I add a constant to U, same thing
  - U is unique up to positive affine transformation

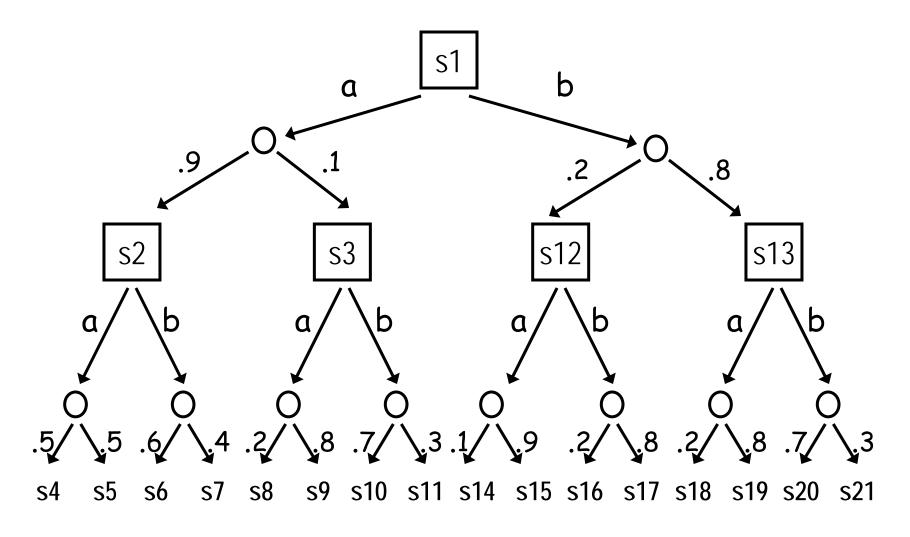
## So What are the Complications?

- Outcome space is large
  - like all of our problems, states spaces can be huge
  - don't want to spell out distributions like Prd explicitly
  - Soln: Bayes nets (or related: influence diagrams)
- Decision space is large
  - usually our decisions are not one-shot actions
  - rather they involve sequential choices (like plans)
  - if we treat each plan as a distinct decision, decision space is too large to handle directly
  - Soln: use dynamic programming methods to *construct* optimal plans (actually generalizations of plans, called policies... like in game trees)

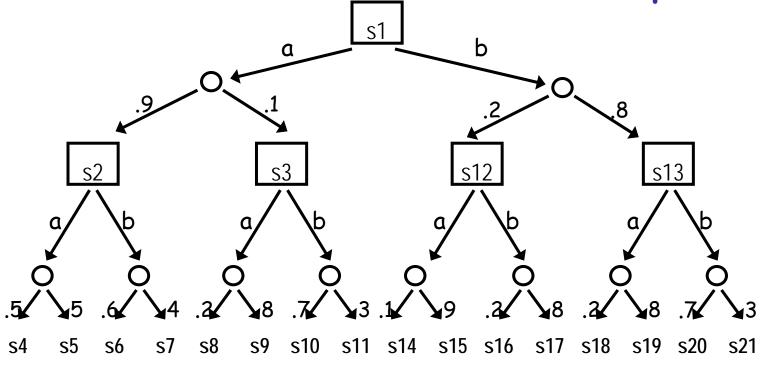
## A Simple Example

- Suppose we have two actions: a, b
- We have time to execute two actions in sequence
- This means we can do either:
  - [a,a], [a,b], [b,a], [b,b]
- Actions are stochastic: action a induces distribution  $Pr_a(s_i \mid s_j)$  over states
  - e.g.,  $Pr_a(s_2 \mid s_1) = .9$  means prob. of moving to state  $s_2$  when a is performed at  $s_1$  is .9
  - similar distribution for action b
- How good is a particular sequence of actions?

#### Distributions for Action Sequences



Distributions for Action Sequences

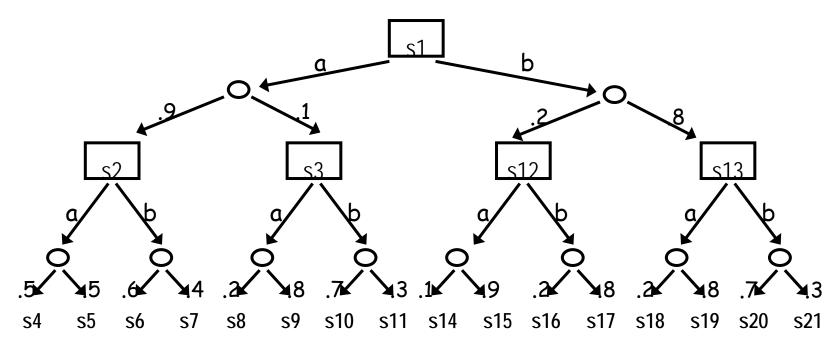


- Sequence [a,a] gives distribution over "final states"
  - Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08
- Similarly:
  - [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = .03
  - and similar distributions for sequences [b,a] and [b,b]

## How Good is a Sequence?

- We associate utilities with the "final" outcomes
  - how good is it to end up at s4, s5, s6, ...
  - note: we could assign utilities to the intermediate states s2, s3, s12, and s13 also. We ignore this for now. Technically, think of utility u(s4) as utility of entire *trajectory* or sequence of states we pass through.
- Now we have:
  - EU(aa) = .45u(s4) + .45u(s5) + .02u(s8) + .08u(s9)
  - EU(ab) = .54u(s6) + .36u(s7) + .07u(s10) + .03u(s11)
  - etc...

## Why Sequences might be bad



- Suppose we do a first; we could reach s2 or s3:
  - At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + .4u(s7)
  - At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11)
- After doing a first, we want to do a next if we reach s2, but we want to do b second if we reach s3

#### Policies

- This suggests that we want to consider policies, not sequences of actions (plans)
- We have eight policies for this decision tree:

```
[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]
```

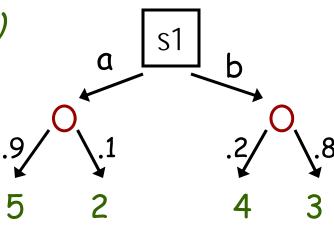
- Contrast this with four "plans"
  - [a; a], [a; b], [b; a], [b; b]
  - note: we can only *gain* by allowing decision maker to use policies

# Evaluating Policies

- Number of plans (sequences) of length k
  - exponential in k:  $|A|^k$  if A is our action set
- Number of policies is even much larger
  - if we have n=|A| actions and m=|O| outcomes per action, then we have  $(nm)^k$  policies
- Fortunately, dynamic programming can be used
  - e.g., suppose EU(a) > EU(b) at s2
  - never consider a policy that does anything else at s2
- How to do this?
  - back values up the tree

### Decision Trees

- · Squares denote choice nodes
  - these denote action choices by decision maker (decision nodes)
- · Circles denote chance nodes
  - these denote uncertainty regarding action effects
  - "nature" will choose the child with specified probability
- Terminal nodes labeled with utilities
  - denote utility of "trajectory"
     (branch) to decision maker



## Evaluating Decision Trees

- Back values up the tree
  - *U(t)* is defined for all terminals (part of input)
  - U(n) = avg {U(c) : c a child of n} if n is a chance node
  - $U(n) = \max \{U(c) : c \text{ a child of } n\} \text{ if } n \text{ is a choice node}$
- At any choice node (state), the decision maker chooses action that leads to highest utility child

# Evaluating a Decision Tree

• 
$$U(n3) = .9*5 + .1*2$$

• 
$$U(n4) = .8*3 + .2*4$$

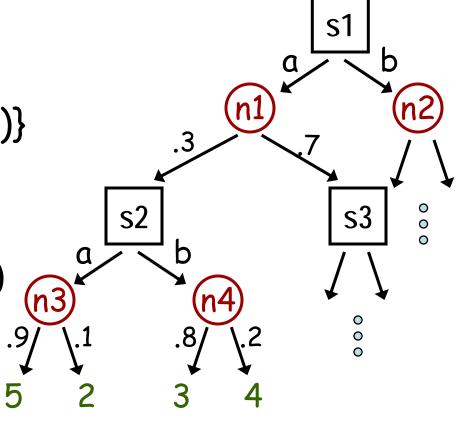
• 
$$U(s2) = max\{U(n3), U(n4)\}$$

decision a or b(whichever is max)

• 
$$U(n1) = .3U(s2) + .7U(s3)$$

•  $U(s1) = max{U(n1), U(n2)}$ 

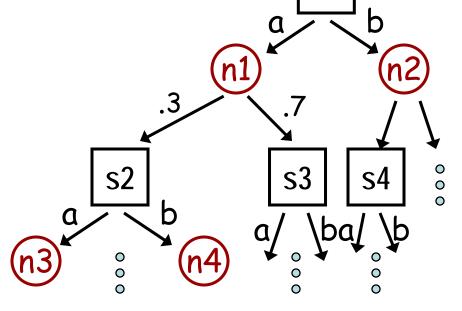
- decision: max of a, b



## Decision Tree Policies

 Note that we don't just compute values, but policies for the tree

 A policy assigns a decision to each choice node in tree



- Some policies can't be distinguished in terms of there expected values
  - e.g., if policy chooses a at node s1, choice at s4 doesn't matter because it won't be reached
  - Two policies are *implementationally indistinguishable* if they disagree only at unreachable decision nodes
    - reachability is determined by policy themselves

## Computational Issues

- Savings compared to explicit policy evaluation is substantial
- Evaluate only  $O((nm)^d)$  nodes in tree of depth d
  - total computational cost is thus  $O((nm)^{d})$
- Note that there are (nm) policies and
  - evaluating a single policy explicitly requires substantial computation: O(md)
  - total computation for explicitly evaluating each policy would be  $O(n^d m^{2d})!!!$
- Tremendous value to dynamic programming solution

## Computational Issues

- · Tree size: grows exponentially with depth
- Possible solution:
  - heuristic search procedures (like A\*)
- Full observability: we must know the initial state and outcome of each action
- Possible solutions:
  - handcrafted decision trees for certain initial state uncertainty
  - more general policies based on observations

#### Other Issues

- Specification: suppose each state is an assignment to variables; then representing action probability distributions is complex (and branching factor could be immense)
- Possible solutions:
  - represent distribution using Bayes nets
  - solve problems using decision networks (or influence diagrams)

#### Next Class

- Decision networks
- · Russell and Norvig Chapter 16